Skip to main content
Top
Published in: Pediatric Radiology 12/2020

01-11-2020 | Minisymposium: Imaging of skeletal dysplasia

Genetics for paediatric radiologists

Authors: Schaida Schirwani, Jennifer Campbell

Published in: Pediatric Radiology | Issue 12/2020

Login to get access

Abstract

An understanding of genetics and genomics is increasingly important for all clinicians. Next-generation genomic sequencing technologies enable sequencing of the entire human genome in short timescales, and are increasingly being implemented in health care systems. Clinicians across all medical specialties will increasingly use results generated from genomic testing to inform their clinical practice and provide the best quality of care for patients. These innovations are already transforming the diagnostic pathways for rare genetic diseases, including skeletal dysplasias, with an inevitable impact on the traditional roles of diagnosticians. This article covers the fundamentals of human genetics, mechanisms of genetic variation and the technologies used to investigate the genetic basis of disease, with a specific focus on skeletal dysplasias and the potential impact of genomics on paediatric radiology.
Literature
1.
go back to reference Turnbull C, Scott RH, Thomas E et al (2018) The 100 000 genomes project: bringing whole genome sequencing to the NHS. BMJ 361:k1687CrossRefPubMed Turnbull C, Scott RH, Thomas E et al (2018) The 100 000 genomes project: bringing whole genome sequencing to the NHS. BMJ 361:k1687CrossRefPubMed
2.
go back to reference Bonafe L, Cormier-Daire V, Hall C et al (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167A:2869–2892CrossRefPubMed Bonafe L, Cormier-Daire V, Hall C et al (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167A:2869–2892CrossRefPubMed
3.
go back to reference Lazarus S, Zankl A, Duncan EL (2014) Next-generation sequencing: a frameshift in skeletal dysplasia gene discovery. Osteoporos Int 25:407–422CrossRefPubMed Lazarus S, Zankl A, Duncan EL (2014) Next-generation sequencing: a frameshift in skeletal dysplasia gene discovery. Osteoporos Int 25:407–422CrossRefPubMed
4.
go back to reference Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefPubMed Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefPubMed
5.
go back to reference Lettice LA, Heaney SJH, Purdie LA et al (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12:1725–1735CrossRefPubMed Lettice LA, Heaney SJH, Purdie LA et al (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12:1725–1735CrossRefPubMed
6.
go back to reference Lupianez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025CrossRefPubMedPubMedCentral Lupianez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025CrossRefPubMedPubMedCentral
7.
go back to reference Estrada K, Styrkarsdottir U, Evangelou E et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501CrossRefPubMedPubMedCentral Estrada K, Styrkarsdottir U, Evangelou E et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501CrossRefPubMedPubMedCentral
8.
go back to reference Klopocki E, Lohan S, Doelken SC et al (2012) Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. J Med Genet 49:119–125CrossRefPubMed Klopocki E, Lohan S, Doelken SC et al (2012) Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. J Med Genet 49:119–125CrossRefPubMed
9.
go back to reference Daugherty A (2017) Achondroplasia: etiology, clinical presentation, and management. Neonatal Netw 36:337–342CrossRefPubMed Daugherty A (2017) Achondroplasia: etiology, clinical presentation, and management. Neonatal Netw 36:337–342CrossRefPubMed
10.
11.
go back to reference Goriely A, Wilkie AOM (2012) Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 90:175–200CrossRefPubMedPubMedCentral Goriely A, Wilkie AOM (2012) Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 90:175–200CrossRefPubMedPubMedCentral
12.
go back to reference Barros NMT, Hoac B, Neves RL et al (2013) Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res 28:688–699CrossRefPubMed Barros NMT, Hoac B, Neves RL et al (2013) Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res 28:688–699CrossRefPubMed
13.
go back to reference Pansuriya TC, Kroon HM, Bovee JVMG (2010) Enchondromatosis: insights on the different subtypes. Int J Clin Exp Pathol 3:557–569PubMedPubMedCentral Pansuriya TC, Kroon HM, Bovee JVMG (2010) Enchondromatosis: insights on the different subtypes. Int J Clin Exp Pathol 3:557–569PubMedPubMedCentral
14.
go back to reference Pansuriya TC, van Eijk R, d'Adamo P et al (2011) Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 43:1256–1261CrossRefPubMedPubMedCentral Pansuriya TC, van Eijk R, d'Adamo P et al (2011) Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 43:1256–1261CrossRefPubMedPubMedCentral
15.
go back to reference Couvineau A, Wouters V, Bertrand G et al (2008) PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet 17:2766–2775CrossRefPubMedPubMedCentral Couvineau A, Wouters V, Bertrand G et al (2008) PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet 17:2766–2775CrossRefPubMedPubMedCentral
16.
go back to reference Gajecka M (2016) Unrevealed mosaicism in the next-generation sequencing era. Mol Gen Genomics 291:513–530CrossRef Gajecka M (2016) Unrevealed mosaicism in the next-generation sequencing era. Mol Gen Genomics 291:513–530CrossRef
17.
go back to reference Zilina O, Koltsina M, Raid R et al (2015) Somatic mosaicism for copy-neutral loss of heterozygosity and DNA copy number variations in the human genome. BMC Genomics 16:703CrossRefPubMedPubMedCentral Zilina O, Koltsina M, Raid R et al (2015) Somatic mosaicism for copy-neutral loss of heterozygosity and DNA copy number variations in the human genome. BMC Genomics 16:703CrossRefPubMedPubMedCentral
18.
go back to reference Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19:253–268CrossRefPubMed Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19:253–268CrossRefPubMed
19.
go back to reference Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8CrossRefPubMed Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8CrossRefPubMed
20.
go back to reference Kohler S, Doelken SC, Mungall CJ et al (2014) The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res 42:D966–D974CrossRefPubMed Kohler S, Doelken SC, Mungall CJ et al (2014) The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res 42:D966–D974CrossRefPubMed
21.
go back to reference Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424CrossRefPubMedPubMedCentral
23.
go back to reference Ain NU, Makitie O, Naz S (2018) Autosomal recessive chondrodysplasia with severe short stature caused by a biallelic COL10A1 variant. J Med Genet 55:403–407CrossRefPubMed Ain NU, Makitie O, Naz S (2018) Autosomal recessive chondrodysplasia with severe short stature caused by a biallelic COL10A1 variant. J Med Genet 55:403–407CrossRefPubMed
24.
go back to reference Taylan F, Makitie O (2016) Abnormal proteoglycan synthesis due to gene defects causes skeletal diseases with overlapping phenotypes. Horm Metab Res 48:745–754CrossRefPubMed Taylan F, Makitie O (2016) Abnormal proteoglycan synthesis due to gene defects causes skeletal diseases with overlapping phenotypes. Horm Metab Res 48:745–754CrossRefPubMed
Metadata
Title
Genetics for paediatric radiologists
Authors
Schaida Schirwani
Jennifer Campbell
Publication date
01-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 12/2020
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-020-04837-4

Other articles of this Issue 12/2020

Pediatric Radiology 12/2020 Go to the issue