Skip to main content
Top
Published in: Pediatric Radiology 13/2018

01-12-2018 | Original Article

A survey of pediatric diagnostic radiologists in North America: current practices in fetal magnetic resonance imaging

Authors: Teresa Chapman, Adina L. Alazraki, Meryle J. Eklund

Published in: Pediatric Radiology | Issue 13/2018

Login to get access

Abstract

Background

Fetal magnetic resonance imaging (MRI) is an imaging examination in evolution. Rapid developments over recent decades have led to better image quality, an increased number of examinations and greater impact on patient care.

Objective

To gather data regarding current practices among established programs in North America and provide information to radiologists interested in implementing or growing a fetal MRI service.

Materials and methods

An electronic survey containing 15 questions relevant to the use of fetal MRI was submitted to pediatric radiologists and neuroradiologists. Items regarded scheduling and reporting logistics, magnet strength, patient positioning and patient preparation. Answers and comments were collected, and descriptive statistics were summarized.

Results

One hundred and six survey responses were evaluated. Of the survey responses, 62/106 (58.5%) allow fetal MR scheduling any time during the day and 72/105 (68.6%) exclusively use 1.5-T strength platforms for fetal MRI, while only 7/105 (6.7%) use exclusively 3 T. Patient positioning is variable: supine, 40/106 (37.8%); left lateral decubitus, 22/106 (20.8%), and, patient’s choice, 43/106 (40.6%). Of the centers responding, 51/104 (49.0%) require no particular fasting instructions, while 20/104 (19.2%) request the patient avoid caffeine before the scanning.

Conclusion

Logistical trends in performing fetal MRI may supplement the American College of Radiology’s published technical standards and offer guidance to radiologists new to the field.
Appendix
Available only for authorised users
Literature
1.
go back to reference Centers for Disease Control and Prevention (2008) Update on overall prevalence of major birth defects–Atlanta, Georgia, 1978-2005. MMWR Morb Mortal Wkly Rep 57:1–5 Centers for Disease Control and Prevention (2008) Update on overall prevalence of major birth defects–Atlanta, Georgia, 1978-2005. MMWR Morb Mortal Wkly Rep 57:1–5
2.
go back to reference Bulas D (2007) Fetal magnetic resonance imaging as a complement to fetal ultrasonography. Ultrasound Q 23:3–22CrossRef Bulas D (2007) Fetal magnetic resonance imaging as a complement to fetal ultrasonography. Ultrasound Q 23:3–22CrossRef
3.
go back to reference Levine D (2013) Timing of MRI in pregnancy, repeat exams, access, and physician qualifications. Semin Perinatol 37:340–344CrossRef Levine D (2013) Timing of MRI in pregnancy, repeat exams, access, and physician qualifications. Semin Perinatol 37:340–344CrossRef
4.
go back to reference Mailáth-Pokorny M, Worda C, Krampl-Bettelheim E et al (2010) What does magnetic resonance imaging add to the prenatal ultrasound diagnosis of facial clefts? Ultrasound Obstet Gynecol 36:445–451CrossRef Mailáth-Pokorny M, Worda C, Krampl-Bettelheim E et al (2010) What does magnetic resonance imaging add to the prenatal ultrasound diagnosis of facial clefts? Ultrasound Obstet Gynecol 36:445–451CrossRef
5.
go back to reference Vimercati A, Greco P, Vera L et al (1999) The diagnostic role of “in utero” magnetic resonance imaging. J Perinat Med 27:303–308CrossRef Vimercati A, Greco P, Vera L et al (1999) The diagnostic role of “in utero” magnetic resonance imaging. J Perinat Med 27:303–308CrossRef
6.
go back to reference Bahado-Singh RO, Goncalves LF (2013) Techniques, terminology, and indications for MRI in pregnancy. Semin Perinatol 37:334–339CrossRef Bahado-Singh RO, Goncalves LF (2013) Techniques, terminology, and indications for MRI in pregnancy. Semin Perinatol 37:334–339CrossRef
7.
go back to reference Smith F, MacLennan F, Abramovich D et al (1984) NMR imaging in human pregnancy: a preliminary study. Magn Reson Imaging 2:57–64CrossRef Smith F, MacLennan F, Abramovich D et al (1984) NMR imaging in human pregnancy: a preliminary study. Magn Reson Imaging 2:57–64CrossRef
8.
go back to reference Thickman D, Mintz M, Mennuti M, Kressel H (1984) MR imaging of cerebral abnormalities in utero. J Comput Assist Tomogr 8:1058–1061CrossRef Thickman D, Mintz M, Mennuti M, Kressel H (1984) MR imaging of cerebral abnormalities in utero. J Comput Assist Tomogr 8:1058–1061CrossRef
9.
go back to reference Johnson I, Symonds E, Kean D et al (1984) Imaging the pregnant human uterus with nuclear magnetic resonance. Am J Obstet Gynecol 148:1136–1139CrossRef Johnson I, Symonds E, Kean D et al (1984) Imaging the pregnant human uterus with nuclear magnetic resonance. Am J Obstet Gynecol 148:1136–1139CrossRef
10.
go back to reference Weinreb JC, Lowe TW, Santos-Ramos R et al (1985) Magnetic resonance imaging in obstetric diagnosis. Radiology 154:157–161CrossRef Weinreb JC, Lowe TW, Santos-Ramos R et al (1985) Magnetic resonance imaging in obstetric diagnosis. Radiology 154:157–161CrossRef
11.
go back to reference Horvath L, Seeds J (1989) Temporary arrest of fetal movement with pancuronium bromide to enable antenatal magnetic resonance imaging of holoprosencephaly. Am J Perinatol 6:418–420CrossRef Horvath L, Seeds J (1989) Temporary arrest of fetal movement with pancuronium bromide to enable antenatal magnetic resonance imaging of holoprosencephaly. Am J Perinatol 6:418–420CrossRef
12.
go back to reference Toma P, Lucigrai G, Dodero P, Lituania M (1990) Prenatal detection of an abdominal mass by MR imaging performed while the fetus is immobilized with pancuronium bromide. AJR Am J Roentgenol 154:1049–1050CrossRef Toma P, Lucigrai G, Dodero P, Lituania M (1990) Prenatal detection of an abdominal mass by MR imaging performed while the fetus is immobilized with pancuronium bromide. AJR Am J Roentgenol 154:1049–1050CrossRef
13.
go back to reference Kitagawa H, Pringle K (2017) Fetal surgery: a critical review. Pediatr Surg Int 33:421–433CrossRef Kitagawa H, Pringle K (2017) Fetal surgery: a critical review. Pediatr Surg Int 33:421–433CrossRef
14.
go back to reference Ryan G, Somme S, Crombleholme TM (2016) Airway compromise in the fetus and neonate: prenatal assessment and perinatal management. Semin Fetal Neonatal Med 21:230–239CrossRef Ryan G, Somme S, Crombleholme TM (2016) Airway compromise in the fetus and neonate: prenatal assessment and perinatal management. Semin Fetal Neonatal Med 21:230–239CrossRef
15.
go back to reference Reddy UM, Abuhamad AZ, Levine D, Saade GR (2014) Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecolog. Am J Obstet Gynecol 210:387–397CrossRef Reddy UM, Abuhamad AZ, Levine D, Saade GR (2014) Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecolog. Am J Obstet Gynecol 210:387–397CrossRef
17.
go back to reference Edwards L, Hui L (2018) First and second trimester screening for fetal structural anomalies. Semin Fetal Neonatal Med 23:102–111CrossRef Edwards L, Hui L (2018) First and second trimester screening for fetal structural anomalies. Semin Fetal Neonatal Med 23:102–111CrossRef
18.
go back to reference Huisman TA, Wisser J, Martin E et al (2002) Fetal magnetic resonance imaging of the central nervous system: a pictorial essay. Eur Radiol 12:1952–1961CrossRef Huisman TA, Wisser J, Martin E et al (2002) Fetal magnetic resonance imaging of the central nervous system: a pictorial essay. Eur Radiol 12:1952–1961CrossRef
19.
go back to reference Huisman TA, Martin E, Kubik-Huch R, Marincek B (2002) Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development. Eur Radiol 12:1941–1951CrossRef Huisman TA, Martin E, Kubik-Huch R, Marincek B (2002) Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development. Eur Radiol 12:1941–1951CrossRef
20.
go back to reference Manganaro L, Bernardo S, Antonelli A et al (2017) Fetal MRI of the central nervous system: state-of-the-art. Eur J Radiol 93:273–283CrossRef Manganaro L, Bernardo S, Antonelli A et al (2017) Fetal MRI of the central nervous system: state-of-the-art. Eur J Radiol 93:273–283CrossRef
21.
go back to reference Limperopoulos C, Robertson RL, Khwaja OS et al (2008) How accurately does current fetal imaging identify posterior fossa anomalies? AJR Am J Roentgenol 190:1637–1643CrossRef Limperopoulos C, Robertson RL, Khwaja OS et al (2008) How accurately does current fetal imaging identify posterior fossa anomalies? AJR Am J Roentgenol 190:1637–1643CrossRef
22.
go back to reference Santos X, Papanna R, Johnson A et al (2010) The use of combined ultrasound and magnetic resonance imaging in the detection of fetal anomalies. Prenat Diagn 30:402–407PubMed Santos X, Papanna R, Johnson A et al (2010) The use of combined ultrasound and magnetic resonance imaging in the detection of fetal anomalies. Prenat Diagn 30:402–407PubMed
23.
go back to reference Ruano R, Lazar DA, Cass DL et al (2014) Fetal lung volume and quantification of liver herniation by magnetic resonance imaging in isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 43:662–669CrossRef Ruano R, Lazar DA, Cass DL et al (2014) Fetal lung volume and quantification of liver herniation by magnetic resonance imaging in isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 43:662–669CrossRef
24.
go back to reference Triebwasser JE, Treadwell MC (2017) Prenatal prediction of pulmonary hypoplasia. Semin Fetal Neonatal Med 22:245–249CrossRef Triebwasser JE, Treadwell MC (2017) Prenatal prediction of pulmonary hypoplasia. Semin Fetal Neonatal Med 22:245–249CrossRef
25.
go back to reference Chiang G, Levine D (2004) Imaging of adnexal masses in pregnancy. J Ultrasound Med 23:805–819CrossRef Chiang G, Levine D (2004) Imaging of adnexal masses in pregnancy. J Ultrasound Med 23:805–819CrossRef
26.
go back to reference Bernardo S, Vinci V, Saldari M et al (2015) Dandy-Walker malformation: is the “tail sign” the key sign? Prenat Diagn 35:1358–1364CrossRef Bernardo S, Vinci V, Saldari M et al (2015) Dandy-Walker malformation: is the “tail sign” the key sign? Prenat Diagn 35:1358–1364CrossRef
27.
go back to reference Robinson AJ, Blaser S, Vladimirov A et al (2015) Foetal “black bone” MRI: utility in assessment of the foetal spine. Br J Radiol 88:1–6CrossRef Robinson AJ, Blaser S, Vladimirov A et al (2015) Foetal “black bone” MRI: utility in assessment of the foetal spine. Br J Radiol 88:1–6CrossRef
28.
go back to reference Ferguson MR, Chapman T, Dighe M (2010) Fetal tumors: imaging features. Pediatr Radiol 40:1263–1273CrossRef Ferguson MR, Chapman T, Dighe M (2010) Fetal tumors: imaging features. Pediatr Radiol 40:1263–1273CrossRef
29.
go back to reference Chapman T (2012) Fetal genitourinary imaging. Pediatr Radiol 42(Suppl 1):S115–S123CrossRef Chapman T (2012) Fetal genitourinary imaging. Pediatr Radiol 42(Suppl 1):S115–S123CrossRef
30.
go back to reference Krekora M, Zych-Krekora K, Blitek M et al (2016) Difficulties in prenatal diagnosis of tumour in the fetal sacrococcygeal area. Ultrasound 24:119–124CrossRef Krekora M, Zych-Krekora K, Blitek M et al (2016) Difficulties in prenatal diagnosis of tumour in the fetal sacrococcygeal area. Ultrasound 24:119–124CrossRef
31.
go back to reference Brodsky JR, Irace AL, Didas A et al (2017) Teratoma of the neonatal head and neck: a 41-year experience. Int J Pediatr Otorhinolaryngol 97:66–71CrossRef Brodsky JR, Irace AL, Didas A et al (2017) Teratoma of the neonatal head and neck: a 41-year experience. Int J Pediatr Otorhinolaryngol 97:66–71CrossRef
32.
go back to reference Saguintaah M, Couture A, Veyrac C et al (2002) MRI of the fetal gastrointestinal tract. Pediatr Radiol 32:395–404CrossRef Saguintaah M, Couture A, Veyrac C et al (2002) MRI of the fetal gastrointestinal tract. Pediatr Radiol 32:395–404CrossRef
33.
go back to reference Faure A, Panait N, Panuel M et al (2017) Predicting postnatal renal function of prenatally detected posterior urethral valves using fetal diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient determination. Prenat Diagn 37:666–672CrossRef Faure A, Panait N, Panuel M et al (2017) Predicting postnatal renal function of prenatally detected posterior urethral valves using fetal diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient determination. Prenat Diagn 37:666–672CrossRef
34.
go back to reference Chen X, Shan R, Zhao L et al (2018) Invasive placenta previa: placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI – useful features for differentiating placenta percreta from placenta accreta. Eur Radiol 28:708–717CrossRef Chen X, Shan R, Zhao L et al (2018) Invasive placenta previa: placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI – useful features for differentiating placenta percreta from placenta accreta. Eur Radiol 28:708–717CrossRef
35.
go back to reference Webb JA, Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR) (2005) The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol 15:1234–1240CrossRef Webb JA, Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR) (2005) The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol 15:1234–1240CrossRef
36.
go back to reference Meng X, Xie L, Song W (2013) Comparing the diagnostic value of ultrasound and magnetic resonance imaging for placenta accreta: a systematic review and meta-analysis. Ultrasound Med Biol 39:1958–1965CrossRef Meng X, Xie L, Song W (2013) Comparing the diagnostic value of ultrasound and magnetic resonance imaging for placenta accreta: a systematic review and meta-analysis. Ultrasound Med Biol 39:1958–1965CrossRef
37.
go back to reference Millischer AE, Salomon LJ, Porcher R et al (2017) Magnetic resonance imaging for abnormally invasive placenta: the added value of intravenous gadolinium injection. BJOG 124:88–95CrossRef Millischer AE, Salomon LJ, Porcher R et al (2017) Magnetic resonance imaging for abnormally invasive placenta: the added value of intravenous gadolinium injection. BJOG 124:88–95CrossRef
38.
go back to reference Bulas D, Egloff A (2013) Benefits and risks of MRI in pregnancy. Semin Perinatol 37:301–304CrossRef Bulas D, Egloff A (2013) Benefits and risks of MRI in pregnancy. Semin Perinatol 37:301–304CrossRef
39.
go back to reference Ray JG, Vermeulen MJ, Bharatha A et al (2016) Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA 316:952–961CrossRef Ray JG, Vermeulen MJ, Bharatha A et al (2016) Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA 316:952–961CrossRef
40.
go back to reference Jaimes C, Delgado J, Hoffman C et al (2017) Does 3T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetus scanned at 1.5 and 3T MRI. Pediatr Radiol 47:S147 Jaimes C, Delgado J, Hoffman C et al (2017) Does 3T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetus scanned at 1.5 and 3T MRI. Pediatr Radiol 47:S147
41.
go back to reference Prayer D, Malinger G, Brugger PC et al (2017) ISUOG practice guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 49:671–680CrossRef Prayer D, Malinger G, Brugger PC et al (2017) ISUOG practice guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 49:671–680CrossRef
42.
go back to reference Plunk MR, Chapman T (2014) The fundamentals of fetal MR imaging: part 1. Curr Probl Diagn Radiol 43:331–346CrossRef Plunk MR, Chapman T (2014) The fundamentals of fetal MR imaging: part 1. Curr Probl Diagn Radiol 43:331–346CrossRef
43.
go back to reference Victoria T, Jaramillo D, Roberts TP et al (2014) Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44:376–386CrossRef Victoria T, Jaramillo D, Roberts TP et al (2014) Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44:376–386CrossRef
44.
go back to reference Zizka J, Elias P, Hodik K et al (2006) Liver, meconium, haemorrhage: the value of T1-weighted images in fetal MRI. Pediatr Radiol 36:792–801CrossRef Zizka J, Elias P, Hodik K et al (2006) Liver, meconium, haemorrhage: the value of T1-weighted images in fetal MRI. Pediatr Radiol 36:792–801CrossRef
45.
go back to reference Inaoka T, Sugimori H, Sasaki Y et al (2007) VIBE MRI for evaluating the normal and abnormal gastrointestinal tract in fetuses. AJR Am J Roentgenol 189:W303–W308CrossRef Inaoka T, Sugimori H, Sasaki Y et al (2007) VIBE MRI for evaluating the normal and abnormal gastrointestinal tract in fetuses. AJR Am J Roentgenol 189:W303–W308CrossRef
47.
go back to reference Dotson P (2013) CPT ® codes: what are they, why are they necessary, and how are they developed? Adv Wound Care 2:583–587CrossRef Dotson P (2013) CPT ® codes: what are they, why are they necessary, and how are they developed? Adv Wound Care 2:583–587CrossRef
48.
go back to reference Howard B, Goodson J, Mengert W (1953) Supine hypotensive syndrome in late pregnancy. Obstet Gynecol 1:371–377PubMed Howard B, Goodson J, Mengert W (1953) Supine hypotensive syndrome in late pregnancy. Obstet Gynecol 1:371–377PubMed
49.
go back to reference Morong S, Hermsen B, De Vries N (2014) Sleep-disordered breathing in pregnancy: a review of the physiology and potential role for positional therapy. Sleep Breath 18:31–37CrossRef Morong S, Hermsen B, De Vries N (2014) Sleep-disordered breathing in pregnancy: a review of the physiology and potential role for positional therapy. Sleep Breath 18:31–37CrossRef
50.
go back to reference Kim DR, Wang E (2014) Prevention of supine hypotensive syndrome in pregnant women treated with transcranial magnetic stimulation. Psychiatry Res 218:247–248CrossRef Kim DR, Wang E (2014) Prevention of supine hypotensive syndrome in pregnant women treated with transcranial magnetic stimulation. Psychiatry Res 218:247–248CrossRef
52.
go back to reference Victoria T, Johnson AM, Christopher Edgar J et al (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201CrossRef Victoria T, Johnson AM, Christopher Edgar J et al (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201CrossRef
53.
go back to reference Cortes MS, Bargallo N, Arranz A et al (2017) Feasibility and success rate of a fetal MRI and MR spectroscopy research protocol performed at term using a 3.0-tesla scanner. Fetal Diagn Ther 41:127–135CrossRef Cortes MS, Bargallo N, Arranz A et al (2017) Feasibility and success rate of a fetal MRI and MR spectroscopy research protocol performed at term using a 3.0-tesla scanner. Fetal Diagn Ther 41:127–135CrossRef
54.
go back to reference Tocchio S, Kline-Fath B, Kanal E et al (2015) MRI evaluation and safety in the developing brain. Semin Perinatol 39:73–104CrossRef Tocchio S, Kline-Fath B, Kanal E et al (2015) MRI evaluation and safety in the developing brain. Semin Perinatol 39:73–104CrossRef
55.
go back to reference Krishnamurthy U, Neelavalli J, Mody S et al (2015) MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality. J Perinat Med 43:209–220CrossRef Krishnamurthy U, Neelavalli J, Mody S et al (2015) MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality. J Perinat Med 43:209–220CrossRef
56.
go back to reference Neelavalli J, Krishnamurthy U, Jella PK et al (2016) Magnetic resonance angiography of fetal vasculature at 3.0 T. Eur Radiol 26:4570–4576CrossRef Neelavalli J, Krishnamurthy U, Jella PK et al (2016) Magnetic resonance angiography of fetal vasculature at 3.0 T. Eur Radiol 26:4570–4576CrossRef
57.
go back to reference Kim K, Habas P, Rajagopalan V et al (2010) Non-iterative relative bias correction for 3D reconstruction of in utero fetal brain MR imaging. Conf Proc IEEE Eng Med Biol Soc 2010:879–882PubMed Kim K, Habas P, Rajagopalan V et al (2010) Non-iterative relative bias correction for 3D reconstruction of in utero fetal brain MR imaging. Conf Proc IEEE Eng Med Biol Soc 2010:879–882PubMed
58.
go back to reference Marami B, Mohseni Salehi SS, Afacan O et al (2017) Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 156:475–488CrossRef Marami B, Mohseni Salehi SS, Afacan O et al (2017) Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 156:475–488CrossRef
59.
go back to reference Seshamani S, Blazejewska AI, Mckown S et al (2016) Detecting default mode networks in utero by integrated 4D fMRI reconstruction and analysis. Hum Brain Mapp 37:4158–4178CrossRef Seshamani S, Blazejewska AI, Mckown S et al (2016) Detecting default mode networks in utero by integrated 4D fMRI reconstruction and analysis. Hum Brain Mapp 37:4158–4178CrossRef
60.
go back to reference Turk EA, Luo J, Gagoski B et al (2017) Spatiotemporal alignment of in utero BOLD-MRI series. J Magn Reson Imaging 46:403–412CrossRef Turk EA, Luo J, Gagoski B et al (2017) Spatiotemporal alignment of in utero BOLD-MRI series. J Magn Reson Imaging 46:403–412CrossRef
61.
go back to reference Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136CrossRef Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136CrossRef
62.
go back to reference Birkenfeld A, Laufer N, Sadovksky E (1980) Diurnal variation of fetal activity. Obstet Gynecol 55:417–419PubMed Birkenfeld A, Laufer N, Sadovksky E (1980) Diurnal variation of fetal activity. Obstet Gynecol 55:417–419PubMed
63.
go back to reference Minors D, Waterhouse J (1979) The effect of maternal posture, meals and time of day on fetal movements. Br J Obs Gynecol 86:717–723CrossRef Minors D, Waterhouse J (1979) The effect of maternal posture, meals and time of day on fetal movements. Br J Obs Gynecol 86:717–723CrossRef
64.
go back to reference Sorokin Y, Dierker LJ Jr (1982) Fetal movement. Clin Obstet Gynecol 25:719–734CrossRef Sorokin Y, Dierker LJ Jr (1982) Fetal movement. Clin Obstet Gynecol 25:719–734CrossRef
65.
go back to reference Yen C, Mehollin-Ray A, Bernardo F et al (2016) Correlation between maternal breakfast and fetal motion during fetal MRI. Pediatr Radiol 46(Suppl 1):138 Yen C, Mehollin-Ray A, Bernardo F et al (2016) Correlation between maternal breakfast and fetal motion during fetal MRI. Pediatr Radiol 46(Suppl 1):138
66.
go back to reference Novak Z, Thurmond A, Ross P et al (1993) Gadolinium-DTPA transplacental transfer and distribution in fetal tissue in rabbits. Investig Radiol 28:828–830CrossRef Novak Z, Thurmond A, Ross P et al (1993) Gadolinium-DTPA transplacental transfer and distribution in fetal tissue in rabbits. Investig Radiol 28:828–830CrossRef
67.
go back to reference Okazaki O, Murayama N, Masubuchi N et al (1996) Placental transfer and milk secretion of gadodiamide injection in rats. Arzneimittelfors Drug Res 46:83–86 Okazaki O, Murayama N, Masubuchi N et al (1996) Placental transfer and milk secretion of gadodiamide injection in rats. Arzneimittelfors Drug Res 46:83–86
68.
go back to reference Rofsky N, Pizzarello D, Weinreb J et al (1994) Effect on fetal mouse development of exposure to MR imaging and gadopentetate dimeglumine. J Magn Reson Imaging 4:805–807CrossRef Rofsky N, Pizzarello D, Weinreb J et al (1994) Effect on fetal mouse development of exposure to MR imaging and gadopentetate dimeglumine. J Magn Reson Imaging 4:805–807CrossRef
69.
go back to reference Rofsky N, Pizzarello D, Duhaney M et al (1995) Effect on magnetic resonance exposure combined with gadopentetate dimeglumine on chromosomes in animal specimens. Acad Radiol 2:492–496CrossRef Rofsky N, Pizzarello D, Duhaney M et al (1995) Effect on magnetic resonance exposure combined with gadopentetate dimeglumine on chromosomes in animal specimens. Acad Radiol 2:492–496CrossRef
70.
go back to reference Morisetti A, Bussi S, Tirone P, de Haen C (1999) Toxicological safety evaluation of gadobenate dimeglumine 0.5M solution for inection (MultiHance), a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23(Suppl 1):S207–S217CrossRef Morisetti A, Bussi S, Tirone P, de Haen C (1999) Toxicological safety evaluation of gadobenate dimeglumine 0.5M solution for inection (MultiHance), a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23(Suppl 1):S207–S217CrossRef
71.
go back to reference Leyendecker JR, Gorengaut V, Brown JJ (2004) MR imaging of maternal diseases of the abdomen and pelvis during pregnancy and the immediate postpartum period. Radiographics 24:1301–1316CrossRef Leyendecker JR, Gorengaut V, Brown JJ (2004) MR imaging of maternal diseases of the abdomen and pelvis during pregnancy and the immediate postpartum period. Radiographics 24:1301–1316CrossRef
72.
go back to reference Birchard KR, Brown MA, Hyslop WB, Semelka RC (2005) MRI of acute abdominal and pelvic pain in pregnant patients. AJR Am J Roentgenol 184:452–458CrossRef Birchard KR, Brown MA, Hyslop WB, Semelka RC (2005) MRI of acute abdominal and pelvic pain in pregnant patients. AJR Am J Roentgenol 184:452–458CrossRef
73.
go back to reference Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34:750–757CrossRef Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34:750–757CrossRef
74.
go back to reference Patenaude Y, Pugash D, Lim K et al (2014) The use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Can 36:349–363CrossRef Patenaude Y, Pugash D, Lim K et al (2014) The use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Can 36:349–363CrossRef
76.
go back to reference Splendiani A, Perri M, Marsecano C et al (2018) Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med 123:125–134CrossRef Splendiani A, Perri M, Marsecano C et al (2018) Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med 123:125–134CrossRef
77.
go back to reference Dekkers IA, Roos R, van der Molen AJ (2018) Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European medicines agency. Eur Radiol 28:1579–1584CrossRef Dekkers IA, Roos R, van der Molen AJ (2018) Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European medicines agency. Eur Radiol 28:1579–1584CrossRef
Metadata
Title
A survey of pediatric diagnostic radiologists in North America: current practices in fetal magnetic resonance imaging
Authors
Teresa Chapman
Adina L. Alazraki
Meryle J. Eklund
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 13/2018
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-018-4236-3

Other articles of this Issue 13/2018

Pediatric Radiology 13/2018 Go to the issue