Skip to main content
Top
Published in: Pediatric Radiology 4/2018

01-04-2018 | Minisymposium: Fetal/neonatal imaging

Fetal neuroimaging: an update on technical advances and clinical findings

Authors: Ashley J. Robinson, M. Ashraf Ederies

Published in: Pediatric Radiology | Issue 4/2018

Login to get access

Abstract

This paper is based on a literature review from 2011 to 2016. The paper is divided into two main sections. The first section relates to technical advances in fetal imaging techniques, including fetal motion compensation, imaging at 3.0 T, 3-D T2-weighted MRI, susceptibility-weighted imaging, computed tomography, morphometric analysis, diffusion tensor imaging, spectroscopy and fetal behavioral assessment. The second section relates to clinical updates, including cerebral lamination, migrational anomalies, midline anomalies, neural tube defects, posterior fossa anomalies, sulcation/gyration and hypoxic–ischemic insults.
Literature
1.
go back to reference Mailath-Pokorny M, Kasprian G, Mitter C et al (2012) Magnetic resonance methods in fetal neurology. Semin Fetal Neonatal Med 17:278–284CrossRefPubMed Mailath-Pokorny M, Kasprian G, Mitter C et al (2012) Magnetic resonance methods in fetal neurology. Semin Fetal Neonatal Med 17:278–284CrossRefPubMed
2.
go back to reference Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136CrossRefPubMed Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136CrossRefPubMed
3.
go back to reference Yen C (2016) Correlation between maternal breakfast and fetal motion during fetal MRI. Pediatr Radiol 46:S138 Yen C (2016) Correlation between maternal breakfast and fetal motion during fetal MRI. Pediatr Radiol 46:S138
4.
go back to reference Malamateniou C, McGuinness AK, Allsop JM et al (2011) Snapshot inversion recovery: an optimized single-shot T1-weighted inversion-recovery sequence for improved fetal brain anatomic delineation. Radiology 258:229–235CrossRefPubMed Malamateniou C, McGuinness AK, Allsop JM et al (2011) Snapshot inversion recovery: an optimized single-shot T1-weighted inversion-recovery sequence for improved fetal brain anatomic delineation. Radiology 258:229–235CrossRefPubMed
5.
go back to reference Keraudren K, Kuklisova-Murgasova M, Kyriakopoulou V et al (2014) Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage 101:633–643CrossRefPubMed Keraudren K, Kuklisova-Murgasova M, Kyriakopoulou V et al (2014) Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage 101:633–643CrossRefPubMed
6.
go back to reference Victoria T, Jaramillo D, Roberts TP et al (2014) Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44:376–386CrossRefPubMed Victoria T, Jaramillo D, Roberts TP et al (2014) Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44:376–386CrossRefPubMed
7.
go back to reference Krishnamurthy U, Neelavalli J, Mody S et al (2015) MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality. J Perinat Med 43:209–220CrossRefPubMed Krishnamurthy U, Neelavalli J, Mody S et al (2015) MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality. J Perinat Med 43:209–220CrossRefPubMed
9.
go back to reference Jarvis D, Griffiths PD, Majewski C (2016) Demonstration of normal and abnormal fetal brains using 3D printing from in utero MR imaging data. AJNR Am J Neuroradiol 37:1757–1761CrossRefPubMed Jarvis D, Griffiths PD, Majewski C (2016) Demonstration of normal and abnormal fetal brains using 3D printing from in utero MR imaging data. AJNR Am J Neuroradiol 37:1757–1761CrossRefPubMed
10.
go back to reference Dai Y, Dong S, Zhu M et al (2014) Visualizing cerebral veins in fetal brain using susceptibility-weighted MRI. Clin Radiol 69:e392–e397CrossRefPubMed Dai Y, Dong S, Zhu M et al (2014) Visualizing cerebral veins in fetal brain using susceptibility-weighted MRI. Clin Radiol 69:e392–e397CrossRefPubMed
11.
go back to reference Neelavalli J, Mody S, Yeo L et al (2014) MR venography of the fetal brain using susceptibility weighted imaging. J Magn Reson Imaging 40:949–957CrossRefPubMed Neelavalli J, Mody S, Yeo L et al (2014) MR venography of the fetal brain using susceptibility weighted imaging. J Magn Reson Imaging 40:949–957CrossRefPubMed
12.
go back to reference Neelavalli J, Jella PK, Krishnamurthy U et al (2014) Measuring venous blood oxygenation in fetal brain using susceptibility-weighted imaging. J Magn Reson Imaging 39:998–1006CrossRefPubMedPubMedCentral Neelavalli J, Jella PK, Krishnamurthy U et al (2014) Measuring venous blood oxygenation in fetal brain using susceptibility-weighted imaging. J Magn Reson Imaging 39:998–1006CrossRefPubMedPubMedCentral
13.
14.
go back to reference Macé G, Sonigo P, Cormier-Daire V et al (2013) Three-dimensional helical computed tomography in prenatal diagnosis of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 42:161–168CrossRefPubMed Macé G, Sonigo P, Cormier-Daire V et al (2013) Three-dimensional helical computed tomography in prenatal diagnosis of fetal skeletal dysplasia. Ultrasound Obstet Gynecol 42:161–168CrossRefPubMed
15.
go back to reference Victoria T, Epelman M, Coleman BG et al (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. AJR Am J Roentgenol 200:989–1000CrossRefPubMed Victoria T, Epelman M, Coleman BG et al (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. AJR Am J Roentgenol 200:989–1000CrossRefPubMed
17.
go back to reference Gholipour A, Limperopoulos C, Clancy S et al (2014) Construction of a deformable spatiotemporal MRI atlas of the fetal brain: evaluation of similarity metrics and deformation models. Med Image Comput Comput Assist Interv 17:292–299PubMedPubMedCentral Gholipour A, Limperopoulos C, Clancy S et al (2014) Construction of a deformable spatiotemporal MRI atlas of the fetal brain: evaluation of similarity metrics and deformation models. Med Image Comput Comput Assist Interv 17:292–299PubMedPubMedCentral
18.
go back to reference Zhan J, Dinov ID, Li J et al (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. NeuroImage 82:115–126CrossRefPubMed Zhan J, Dinov ID, Li J et al (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. NeuroImage 82:115–126CrossRefPubMed
19.
go back to reference Clouchoux C, Guizard N, Evans AC et al (2012) Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol 206:173.e1–173.e8CrossRef Clouchoux C, Guizard N, Evans AC et al (2012) Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol 206:173.e1–173.e8CrossRef
20.
go back to reference Gholipour A, Akhondi-Asl A, Estroff JA, Warfield SK (2012) Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage 60:1819–1831CrossRefPubMedPubMedCentral Gholipour A, Akhondi-Asl A, Estroff JA, Warfield SK (2012) Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage 60:1819–1831CrossRefPubMedPubMedCentral
21.
go back to reference Wright R, Kyriakopoulou V, Ledig C et al (2014) Automatic quantification of normal cortical folding patterns from fetal brain MRI. NeuroImage 91:21–32CrossRefPubMed Wright R, Kyriakopoulou V, Ledig C et al (2014) Automatic quantification of normal cortical folding patterns from fetal brain MRI. NeuroImage 91:21–32CrossRefPubMed
22.
go back to reference Clouchoux C, Kudelski D, Gholipour A et al (2012) Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct 217:127–139CrossRefPubMed Clouchoux C, Kudelski D, Gholipour A et al (2012) Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct 217:127–139CrossRefPubMed
23.
go back to reference Wu J, Awate SP, Licht DJ et al (2015) Assessment of MRI-based automated fetal cerebral cortical folding measures in prediction of gestational age in the third trimester. AJNR Am J Neuroradiol 36:1369–1374CrossRefPubMedPubMedCentral Wu J, Awate SP, Licht DJ et al (2015) Assessment of MRI-based automated fetal cerebral cortical folding measures in prediction of gestational age in the third trimester. AJNR Am J Neuroradiol 36:1369–1374CrossRefPubMedPubMedCentral
26.
go back to reference Ouyang A, Jeon T, Sunkin SM et al (2015) Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging. Methods 73:27–37CrossRefPubMed Ouyang A, Jeon T, Sunkin SM et al (2015) Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging. Methods 73:27–37CrossRefPubMed
27.
go back to reference Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464CrossRefPubMed Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464CrossRefPubMed
28.
go back to reference Huang H, Vasung L (2014) Gaining insight of fetal brain development with diffusion MRI and histology. Int J Dev Neurosci 32:11–22CrossRefPubMed Huang H, Vasung L (2014) Gaining insight of fetal brain development with diffusion MRI and histology. Int J Dev Neurosci 32:11–22CrossRefPubMed
29.
go back to reference Jakab A, Kasprian G, Schwartz E et al (2015) Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. NeuroImage111:277–288 Jakab A, Kasprian G, Schwartz E et al (2015) Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. NeuroImage111:277–288
30.
go back to reference Simões RV, Sanz-Cortes M, Muñoz-Moreno E et al (2015) Feasibility and technical features of fetal brain magnetic resonance spectroscopy in 1.5 T scanners. Am J Obstet Gynecol 213:741–742CrossRefPubMed Simões RV, Sanz-Cortes M, Muñoz-Moreno E et al (2015) Feasibility and technical features of fetal brain magnetic resonance spectroscopy in 1.5 T scanners. Am J Obstet Gynecol 213:741–742CrossRefPubMed
31.
go back to reference Berger-Kulemann V, Brugger PC, Pugash D et al (2013) MR spectroscopy of the fetal brain: is it possible without sedation? AJNR Am J Neuroradiol 34:424–431CrossRefPubMed Berger-Kulemann V, Brugger PC, Pugash D et al (2013) MR spectroscopy of the fetal brain: is it possible without sedation? AJNR Am J Neuroradiol 34:424–431CrossRefPubMed
32.
go back to reference Cetin I, Barberis B, Brusati V et al (2011) Lactate detection in the brain of growth-restricted fetuses with magnetic resonance spectroscopy. Am J Obstet Gynecol 205:350.e1–350.e7CrossRef Cetin I, Barberis B, Brusati V et al (2011) Lactate detection in the brain of growth-restricted fetuses with magnetic resonance spectroscopy. Am J Obstet Gynecol 205:350.e1–350.e7CrossRef
33.
go back to reference Hayat TT, Nihat A, Martinez-Biarge M et al (2011) Optimization and initial experience of a multisection balanced steady-state free precession cine sequence for the assessment of fetal behavior in utero. AJNR Am J Neuroradiol 32:331–338CrossRefPubMed Hayat TT, Nihat A, Martinez-Biarge M et al (2011) Optimization and initial experience of a multisection balanced steady-state free precession cine sequence for the assessment of fetal behavior in utero. AJNR Am J Neuroradiol 32:331–338CrossRefPubMed
34.
go back to reference Pugash D, Hendson G, Dunham CP et al (2012) Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination. Ultrasound Obstet Gynecol 40:642–651CrossRefPubMed Pugash D, Hendson G, Dunham CP et al (2012) Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination. Ultrasound Obstet Gynecol 40:642–651CrossRefPubMed
35.
go back to reference Lipitz S, Yinon Y, Malinger G et al (2013) Risk of cytomegalovirus-associated sequelae in relation to time of infection and findings on prenatal imaging. Ultrasound Obstet Gynecol 41:508–514CrossRefPubMed Lipitz S, Yinon Y, Malinger G et al (2013) Risk of cytomegalovirus-associated sequelae in relation to time of infection and findings on prenatal imaging. Ultrasound Obstet Gynecol 41:508–514CrossRefPubMed
36.
go back to reference Blondiaux E, Sileo C, Nahama-Allouche C et al (2013) Periventricular nodular heterotopia on prenatal ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol 42:149–155CrossRefPubMed Blondiaux E, Sileo C, Nahama-Allouche C et al (2013) Periventricular nodular heterotopia on prenatal ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol 42:149–155CrossRefPubMed
37.
go back to reference Teixeira SR, Blondiaux E, Cassart M et al (2015) Association of periventricular nodular heterotopia with posterior fossa cyst: a prenatal case series. Prenat Diagn 35:337–341CrossRefPubMed Teixeira SR, Blondiaux E, Cassart M et al (2015) Association of periventricular nodular heterotopia with posterior fossa cyst: a prenatal case series. Prenat Diagn 35:337–341CrossRefPubMed
38.
go back to reference Fallet-Bianco C, Laquerrière A, Poirier K et al (2014) Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathol Commun 2:69CrossRefPubMedPubMedCentral Fallet-Bianco C, Laquerrière A, Poirier K et al (2014) Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathol Commun 2:69CrossRefPubMedPubMedCentral
39.
go back to reference Lacalm A, Nadaud B, Massoud M et al (2016) Prenatal diagnosis of cobblestone lissencephaly associated with Walker-Warburg syndrome based on a specific sonographic pattern. Ultrasound Obstet Gynecol 47:117–122CrossRefPubMed Lacalm A, Nadaud B, Massoud M et al (2016) Prenatal diagnosis of cobblestone lissencephaly associated with Walker-Warburg syndrome based on a specific sonographic pattern. Ultrasound Obstet Gynecol 47:117–122CrossRefPubMed
40.
go back to reference Bell S, O'Mahony E, Fink AM et al (2015) Antenatal imaging of anomalies of the corpus callosum: a decade of experience. Arch Gynecol Obstet 292:537–542CrossRefPubMed Bell S, O'Mahony E, Fink AM et al (2015) Antenatal imaging of anomalies of the corpus callosum: a decade of experience. Arch Gynecol Obstet 292:537–542CrossRefPubMed
41.
go back to reference Kasprian G, Brugger PC, Schöpf V et al (2013) Assessing prenatal white matter connectivity in commissural agenesis. Brain 136:168–179CrossRefPubMed Kasprian G, Brugger PC, Schöpf V et al (2013) Assessing prenatal white matter connectivity in commissural agenesis. Brain 136:168–179CrossRefPubMed
42.
go back to reference Vinurel N, Van Nieuwenhuyse A, Cagneaux M et al (2014) Distortion of the anterior part of the interhemispheric fissure: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol 43:346–352CrossRefPubMed Vinurel N, Van Nieuwenhuyse A, Cagneaux M et al (2014) Distortion of the anterior part of the interhemispheric fissure: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol 43:346–352CrossRefPubMed
43.
go back to reference Woitek R, Dvorak A, Weber M et al (2014) MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine. PLoS One 9:e112585CrossRefPubMedPubMedCentral Woitek R, Dvorak A, Weber M et al (2014) MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine. PLoS One 9:e112585CrossRefPubMedPubMedCentral
44.
go back to reference Mignone Philpott C, Shannon P, Chitayat D et al (2013) Diffusion-weighted imaging of the cerebellum in the fetus with Chiari II malformation. AJNR Am J Neuroradiol 34:1656–1660CrossRefPubMed Mignone Philpott C, Shannon P, Chitayat D et al (2013) Diffusion-weighted imaging of the cerebellum in the fetus with Chiari II malformation. AJNR Am J Neuroradiol 34:1656–1660CrossRefPubMed
45.
go back to reference Kasprian GJ, Paldino MJ, Mehollin-Ray AR et al (2015) Prenatal imaging of occipital encephaloceles. Fetal Diagn Ther 37:241–248CrossRefPubMed Kasprian GJ, Paldino MJ, Mehollin-Ray AR et al (2015) Prenatal imaging of occipital encephaloceles. Fetal Diagn Ther 37:241–248CrossRefPubMed
46.
go back to reference Dankovcik R, Vyhnalkova V, Muranska S et al (2012) Encephalocystocele — uncommon diagnosis in prenatal medicine. Fetal Diagn Ther 32:295–298CrossRefPubMed Dankovcik R, Vyhnalkova V, Muranska S et al (2012) Encephalocystocele — uncommon diagnosis in prenatal medicine. Fetal Diagn Ther 32:295–298CrossRefPubMed
47.
go back to reference Pugash D, Oh T, Godwin K et al (2011) Sonographic 'molar tooth' sign in the diagnosis of Joubert syndrome. Ultrasound Obstet Gynecol 38:598–602CrossRefPubMed Pugash D, Oh T, Godwin K et al (2011) Sonographic 'molar tooth' sign in the diagnosis of Joubert syndrome. Ultrasound Obstet Gynecol 38:598–602CrossRefPubMed
48.
go back to reference Quarello E, Molho M, Garel C et al (2014) Prenatal abnormal features of the fourth ventricle in Joubert syndrome and related disorders. Ultrasound Obstet Gynecol 43:227–232CrossRefPubMed Quarello E, Molho M, Garel C et al (2014) Prenatal abnormal features of the fourth ventricle in Joubert syndrome and related disorders. Ultrasound Obstet Gynecol 43:227–232CrossRefPubMed
49.
go back to reference Robinson AJ (2014) Inferior vermian hypoplasia — preconception, misconception. Ultrasound Obstet Gynecol 43:123–136CrossRefPubMed Robinson AJ (2014) Inferior vermian hypoplasia — preconception, misconception. Ultrasound Obstet Gynecol 43:123–136CrossRefPubMed
50.
go back to reference Bolduc ME, du Plessis AJ, Sullivan N et al (2012) Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum 11:531–542CrossRefPubMed Bolduc ME, du Plessis AJ, Sullivan N et al (2012) Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum 11:531–542CrossRefPubMed
51.
go back to reference Massoud M, Cagneaux M, Garel C et al (2014) Prenatal unilateral cerebellar hypoplasia in a series of 26 cases: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol 44:447–454CrossRefPubMed Massoud M, Cagneaux M, Garel C et al (2014) Prenatal unilateral cerebellar hypoplasia in a series of 26 cases: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol 44:447–454CrossRefPubMed
52.
go back to reference Fernández-Mayoralas DM, Recio-Rodríguez M, Fernández-Perrone AL et al (2014) In utero diagnosis of PHACE syndrome by fetal magnetic resonance imaging (MRI). J Child Neurol 29:118–121CrossRefPubMed Fernández-Mayoralas DM, Recio-Rodríguez M, Fernández-Perrone AL et al (2014) In utero diagnosis of PHACE syndrome by fetal magnetic resonance imaging (MRI). J Child Neurol 29:118–121CrossRefPubMed
53.
go back to reference Manganaro L, Bernardo S, La Barbera L et al (2012) Role of foetal MRI in the evaluation of ischaemic-haemorrhagic lesions of the foetal brain. J Perinat Med 40:419–426CrossRefPubMed Manganaro L, Bernardo S, La Barbera L et al (2012) Role of foetal MRI in the evaluation of ischaemic-haemorrhagic lesions of the foetal brain. J Perinat Med 40:419–426CrossRefPubMed
54.
go back to reference Leroy F, Cai Q, Bogart SL et al (2015) New human-specific brain landmark: the depth asymmetry of superior temporal sulcus. Proc Natl Acad Sci U S A 112:1208–1213CrossRefPubMedPubMedCentral Leroy F, Cai Q, Bogart SL et al (2015) New human-specific brain landmark: the depth asymmetry of superior temporal sulcus. Proc Natl Acad Sci U S A 112:1208–1213CrossRefPubMedPubMedCentral
55.
go back to reference Fink AM, Hingston T, Sampson A et al (2010) Malformation of the fetal brain in thanatophoric dysplasia: US and MRI findings. Pediatr Radiol 40:S134–S137CrossRefPubMed Fink AM, Hingston T, Sampson A et al (2010) Malformation of the fetal brain in thanatophoric dysplasia: US and MRI findings. Pediatr Radiol 40:S134–S137CrossRefPubMed
56.
go back to reference Pugash D, Lehman AM, Langlois S (2014) Prenatal ultrasound and MRI findings of temporal and occipital lobe dysplasia in a twin with achondroplasia. Ultrasound Obstet Gynecol 44:365–368CrossRefPubMed Pugash D, Lehman AM, Langlois S (2014) Prenatal ultrasound and MRI findings of temporal and occipital lobe dysplasia in a twin with achondroplasia. Ultrasound Obstet Gynecol 44:365–368CrossRefPubMed
57.
go back to reference Cesaretti C, Spaccini L, Rustico M et al (2014) Prenatal magnetic resonance imaging detection of temporal lobes and hippocampal anomalies in hypochondroplasia. Prenat Diagn 34:1015–1017CrossRefPubMed Cesaretti C, Spaccini L, Rustico M et al (2014) Prenatal magnetic resonance imaging detection of temporal lobes and hippocampal anomalies in hypochondroplasia. Prenat Diagn 34:1015–1017CrossRefPubMed
58.
go back to reference Rubio EI, Blask A, Bulas DI (2016) Ultrasound and MR imaging findings in prenatal diagnosis of craniosynostosis syndromes. Pediatr Radiol 46:709–718CrossRefPubMed Rubio EI, Blask A, Bulas DI (2016) Ultrasound and MR imaging findings in prenatal diagnosis of craniosynostosis syndromes. Pediatr Radiol 46:709–718CrossRefPubMed
59.
go back to reference Stark Z, McGillivray G, Sampson A et al (2015) Apert syndrome: temporal lobe abnormalities on fetal brain imaging. Prenat Diagn 35:179–182CrossRefPubMed Stark Z, McGillivray G, Sampson A et al (2015) Apert syndrome: temporal lobe abnormalities on fetal brain imaging. Prenat Diagn 35:179–182CrossRefPubMed
60.
go back to reference Ozcan UA, Işik U, Dincer A, Erzen C (2013) Identification of fetal precentral gyrus on diffusion weighted MRI. Brain Dev 35:4–9CrossRefPubMed Ozcan UA, Işik U, Dincer A, Erzen C (2013) Identification of fetal precentral gyrus on diffusion weighted MRI. Brain Dev 35:4–9CrossRefPubMed
61.
go back to reference Righini A, Parazzini C, Doneda C et al (2012) Early formative stage of human focal cortical gyration anomalies: fetal MRI. AJR Am J Roentgenol 198:439–447CrossRefPubMed Righini A, Parazzini C, Doneda C et al (2012) Early formative stage of human focal cortical gyration anomalies: fetal MRI. AJR Am J Roentgenol 198:439–447CrossRefPubMed
62.
go back to reference Tarui T, Khwaja OS, Estroff JA et al (2012) Altered fetal cerebral and cerebellar development in twin-twin transfusion syndrome. AJNR Am J Neuroradiol 33:1121–1126CrossRefPubMed Tarui T, Khwaja OS, Estroff JA et al (2012) Altered fetal cerebral and cerebellar development in twin-twin transfusion syndrome. AJNR Am J Neuroradiol 33:1121–1126CrossRefPubMed
63.
go back to reference Griffiths PD, Sharrack S, Chan KL et al (2015) Fetal brain injury in survivors of twin pregnancies complicated by demise of one twin as assessed by in utero MR imaging. Prenat Diagn 35:583–591CrossRefPubMed Griffiths PD, Sharrack S, Chan KL et al (2015) Fetal brain injury in survivors of twin pregnancies complicated by demise of one twin as assessed by in utero MR imaging. Prenat Diagn 35:583–591CrossRefPubMed
64.
go back to reference Merhar SL, Kline-Fath BM, Meinzen-Derr J et al (2013) Fetal and postnatal brain MRI in premature infants with twin-twin transfusion syndrome. J Perinatol 33:112–118CrossRefPubMed Merhar SL, Kline-Fath BM, Meinzen-Derr J et al (2013) Fetal and postnatal brain MRI in premature infants with twin-twin transfusion syndrome. J Perinatol 33:112–118CrossRefPubMed
65.
go back to reference Weisz B, Hoffmann C, Ben-Baruch S et al (2014) Early detection by diffusion-weighted sequence magnetic resonance imaging of severe brain lesions after fetoscopic laser coagulation for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol 44:44–49CrossRefPubMed Weisz B, Hoffmann C, Ben-Baruch S et al (2014) Early detection by diffusion-weighted sequence magnetic resonance imaging of severe brain lesions after fetoscopic laser coagulation for twin-twin transfusion syndrome. Ultrasound Obstet Gynecol 44:44–49CrossRefPubMed
66.
go back to reference Tarui T, Khwaja OS, Estroff JA et al (2011) Fetal MR imaging evidence of prolonged apparent diffusion coefficient decrease in fetal death. AJNR Am J Neuroradiol 32:E126–E128CrossRefPubMed Tarui T, Khwaja OS, Estroff JA et al (2011) Fetal MR imaging evidence of prolonged apparent diffusion coefficient decrease in fetal death. AJNR Am J Neuroradiol 32:E126–E128CrossRefPubMed
67.
68.
go back to reference Schellen C, Ernst S, Gruber GM et al (2015) Fetal MRI detects early alterations of brain development in tetralogy of Fallot. Am J Obstet Gynecol 213:392.e1–392.e7CrossRef Schellen C, Ernst S, Gruber GM et al (2015) Fetal MRI detects early alterations of brain development in tetralogy of Fallot. Am J Obstet Gynecol 213:392.e1–392.e7CrossRef
69.
go back to reference Clouchoux C, du Plessis AJ, Bouyssi-Kobar M et al (2013) Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex 23:2932–2943CrossRefPubMed Clouchoux C, du Plessis AJ, Bouyssi-Kobar M et al (2013) Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex 23:2932–2943CrossRefPubMed
70.
go back to reference Brossard-Racine M, du Plessis AJ, Vezina G et al (2014) Prevalence and spectrum of in utero structural brain abnormalities in fetuses with complex congenital heart disease. AJNR Am J Neuroradiol 35:1593–1599CrossRefPubMed Brossard-Racine M, du Plessis AJ, Vezina G et al (2014) Prevalence and spectrum of in utero structural brain abnormalities in fetuses with complex congenital heart disease. AJNR Am J Neuroradiol 35:1593–1599CrossRefPubMed
71.
go back to reference Mlczoch E, Brugger P, Ulm B et al (2013) Structural congenital brain disease in congenital heart disease: results from a fetal MRI program. Eur J Paediatr Neurol 17:153–160CrossRefPubMed Mlczoch E, Brugger P, Ulm B et al (2013) Structural congenital brain disease in congenital heart disease: results from a fetal MRI program. Eur J Paediatr Neurol 17:153–160CrossRefPubMed
72.
go back to reference Sun L, Macgowan CK, Sled JG et al (2015) Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 131:1313–1323CrossRefPubMedPubMedCentral Sun L, Macgowan CK, Sled JG et al (2015) Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 131:1313–1323CrossRefPubMedPubMedCentral
73.
74.
go back to reference Li Y, Yin S, Fang J et al (2015) Neurodevelopmental delay with critical congenital heart disease is mainly from prenatal injury not infant cardiac surgery: current evidence based on a meta-analysis of functional magnetic resonance imaging. Ultrasound Obstet Gynecol 45:639–648CrossRefPubMed Li Y, Yin S, Fang J et al (2015) Neurodevelopmental delay with critical congenital heart disease is mainly from prenatal injury not infant cardiac surgery: current evidence based on a meta-analysis of functional magnetic resonance imaging. Ultrasound Obstet Gynecol 45:639–648CrossRefPubMed
Metadata
Title
Fetal neuroimaging: an update on technical advances and clinical findings
Authors
Ashley J. Robinson
M. Ashraf Ederies
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 4/2018
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-017-3965-z

Other articles of this Issue 4/2018

Pediatric Radiology 4/2018 Go to the issue

Minisymposium: Fetal/neonatal imaging

Fetal/neonatal minisymposium — 2017 executive summary