Skip to main content
Top
Published in: Pediatric Radiology 10/2016

01-09-2016 | Original Article

Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis

Authors: Skorn Ponrartana, Carissa L. Fisher, Patricia C. Aggabao, Thomas A. Chavez, Alexander M. Broom, Tishya A. L. Wren, David L. Skaggs, Vicente Gilsanz

Published in: Pediatric Radiology | Issue 10/2016

Login to get access

Abstract

Background

When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis.

Objective

To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis.

Materials and methods

Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight.

Results

Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm2; P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm2; P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index.

Conclusion

We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights – two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis.
Literature
2.
go back to reference Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7:3–9CrossRefPubMed Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7:3–9CrossRefPubMed
3.
4.
go back to reference Arfai K, Pitukcheewanont PD, Goran MI et al (2002) Bone, muscle, and fat: sex-related differences in prepubertal children. Radiology 224:338–344CrossRefPubMed Arfai K, Pitukcheewanont PD, Goran MI et al (2002) Bone, muscle, and fat: sex-related differences in prepubertal children. Radiology 224:338–344CrossRefPubMed
5.
go back to reference Gilsanz V, Boechat MI, Gilsanz R et al (1994) Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 190:678–682CrossRefPubMed Gilsanz V, Boechat MI, Gilsanz R et al (1994) Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 190:678–682CrossRefPubMed
6.
go back to reference Middleditch A, Oliver J (2005) Normal movement. In: Middleditch A, Oliver J (eds) Functional anatomy of the spine. Butterworth Heinemann, Oxford, pp 173–208 Middleditch A, Oliver J (2005) Normal movement. In: Middleditch A, Oliver J (eds) Functional anatomy of the spine. Butterworth Heinemann, Oxford, pp 173–208
7.
go back to reference Haley SM, Tada WL, Carmichael EM (1986) Spinal mobility in young children. A normative study. Phys Ther 66:1697–1703PubMed Haley SM, Tada WL, Carmichael EM (1986) Spinal mobility in young children. A normative study. Phys Ther 66:1697–1703PubMed
8.
go back to reference Penha PJ, Casarotto RA, Sacco ICN et al (2008) Qualitative postural analysis among boys and girls of seven to ten years of age. Rev Bras Fisioter 12:386–391CrossRef Penha PJ, Casarotto RA, Sacco ICN et al (2008) Qualitative postural analysis among boys and girls of seven to ten years of age. Rev Bras Fisioter 12:386–391CrossRef
9.
go back to reference Larsson LG, Baum J, Mudholkar GS (1987) Hypermobility: features and differential incidence between the sexes. Arthritis Rheum 30:1426–1430CrossRefPubMed Larsson LG, Baum J, Mudholkar GS (1987) Hypermobility: features and differential incidence between the sexes. Arthritis Rheum 30:1426–1430CrossRefPubMed
10.
go back to reference Tanchev PI, Dzherov AD, Parushev AD et al (2000) Scoliosis in rhythmic gymnasts. Spine (Phila Pa 1976) 25:1367–1372CrossRef Tanchev PI, Dzherov AD, Parushev AD et al (2000) Scoliosis in rhythmic gymnasts. Spine (Phila Pa 1976) 25:1367–1372CrossRef
11.
go back to reference Warren MP, Brooks-Gunn J, Hamilton LH et al (1986) Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med 314:1348–1353CrossRefPubMed Warren MP, Brooks-Gunn J, Hamilton LH et al (1986) Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med 314:1348–1353CrossRefPubMed
12.
go back to reference Meyer C, Cammarata E, Haumont T et al (2006) Why do idiopathic scoliosis patients participate more in gymnastics? Scand J Med Sci Sports 16:231–236CrossRefPubMed Meyer C, Cammarata E, Haumont T et al (2006) Why do idiopathic scoliosis patients participate more in gymnastics? Scand J Med Sci Sports 16:231–236CrossRefPubMed
13.
go back to reference Hodson GC (1984) Vertebral body dimensions: an aid to diagnosis of severely progressive adolescent idiopathic scoliosis? Aust J Physiother 30:39–41CrossRefPubMed Hodson GC (1984) Vertebral body dimensions: an aid to diagnosis of severely progressive adolescent idiopathic scoliosis? Aust J Physiother 30:39–41CrossRefPubMed
15.
go back to reference Gilsanz V, Perez FJ, Campbell PP et al (2009) Quantitative CT reference values for vertebral trabecular bone density in children and young adults. Radiology 250:222–227CrossRefPubMedPubMedCentral Gilsanz V, Perez FJ, Campbell PP et al (2009) Quantitative CT reference values for vertebral trabecular bone density in children and young adults. Radiology 250:222–227CrossRefPubMedPubMedCentral
16.
go back to reference Cook SD, Harding AF, Morgan EL et al (1987) Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop 7:168–174CrossRefPubMed Cook SD, Harding AF, Morgan EL et al (1987) Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop 7:168–174CrossRefPubMed
17.
go back to reference Thomas KA, Cook SD, Skalley TC et al (1992) Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop 12:235–240CrossRefPubMed Thomas KA, Cook SD, Skalley TC et al (1992) Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop 12:235–240CrossRefPubMed
18.
19.
go back to reference Pourabbas Tahvildari B, Erfani MA, Nouraei H et al (2014) Evaluation of bone mineral status in adolescent idiopathic scoliosis. Clin Orthop Surg 6:180–184CrossRefPubMedPubMedCentral Pourabbas Tahvildari B, Erfani MA, Nouraei H et al (2014) Evaluation of bone mineral status in adolescent idiopathic scoliosis. Clin Orthop Surg 6:180–184CrossRefPubMedPubMedCentral
20.
22.
go back to reference Cheng JC, Guo X, Sher AH (1999) Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine (Phila Pa 1976) 24:1218–1222CrossRef Cheng JC, Guo X, Sher AH (1999) Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine (Phila Pa 1976) 24:1218–1222CrossRef
23.
go back to reference Wren TA, Liu X, Pitukcheewanont P et al (2005) Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab 90:1925–1928CrossRefPubMed Wren TA, Liu X, Pitukcheewanont P et al (2005) Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab 90:1925–1928CrossRefPubMed
24.
go back to reference Middleditch A, Oliver J (2005) Intervertebral discs. Functional anatomy of the spine. Butterworth Heinemann, Oxford, pp 63–86 Middleditch A, Oliver J (2005) Intervertebral discs. Functional anatomy of the spine. Butterworth Heinemann, Oxford, pp 63–86
25.
go back to reference Will RE, Stokes IA, Qiu X et al (2009) Cobb angle progression in adolescent scoliosis begins at the intervertebral disc. Spine (Phila Pa 1976) 34:2782–2786CrossRef Will RE, Stokes IA, Qiu X et al (2009) Cobb angle progression in adolescent scoliosis begins at the intervertebral disc. Spine (Phila Pa 1976) 34:2782–2786CrossRef
26.
go back to reference He Y, Qiu Y, Zhu F et al (2006) Quantitative analysis of types I and II collagen in the disc annulus in adolescent idiopathic scoliosis. Stud Health Technol Inform 123:123–128PubMed He Y, Qiu Y, Zhu F et al (2006) Quantitative analysis of types I and II collagen in the disc annulus in adolescent idiopathic scoliosis. Stud Health Technol Inform 123:123–128PubMed
27.
go back to reference Hung VW, Qin L, Cheung CS et al (2005) Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 87:2709–2716CrossRefPubMed Hung VW, Qin L, Cheung CS et al (2005) Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 87:2709–2716CrossRefPubMed
28.
29.
go back to reference de Seze M, Cugy E (2012) Pathogenesis of idiopathic scoliosis: a review. Ann Phys Rehabil Med 55:128–138CrossRefPubMed de Seze M, Cugy E (2012) Pathogenesis of idiopathic scoliosis: a review. Ann Phys Rehabil Med 55:128–138CrossRefPubMed
30.
go back to reference Scherrer SA, Begon M, Leardini A et al (2013) Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis. PLoS ONE 8:e71504CrossRefPubMedPubMedCentral Scherrer SA, Begon M, Leardini A et al (2013) Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis. PLoS ONE 8:e71504CrossRefPubMedPubMedCentral
31.
go back to reference Jaramillo D, Poussaint TY, Grottkau BE (2003) Scoliosis: evidence-based diagnostic evaluation. Neuroimaging Clin N Am 13:335–341, xii CrossRefPubMed Jaramillo D, Poussaint TY, Grottkau BE (2003) Scoliosis: evidence-based diagnostic evaluation. Neuroimaging Clin N Am 13:335–341, xii CrossRefPubMed
32.
go back to reference Burwell RG, Dangerfield PH, Moulton A et al (2013) Whither the etiopathogenesis (and scoliogeny) of adolescent idiopathic scoliosis? Incorporating presentations on scoliogeny at the 2012 IRSSD and SRS meetings. Scoliosis 8:4CrossRefPubMedPubMedCentral Burwell RG, Dangerfield PH, Moulton A et al (2013) Whither the etiopathogenesis (and scoliogeny) of adolescent idiopathic scoliosis? Incorporating presentations on scoliogeny at the 2012 IRSSD and SRS meetings. Scoliosis 8:4CrossRefPubMedPubMedCentral
Metadata
Title
Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis
Authors
Skorn Ponrartana
Carissa L. Fisher
Patricia C. Aggabao
Thomas A. Chavez
Alexander M. Broom
Tishya A. L. Wren
David L. Skaggs
Vicente Gilsanz
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 10/2016
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-016-3633-8

Other articles of this Issue 10/2016

Pediatric Radiology 10/2016 Go to the issue