Skip to main content
Top
Published in: Pediatric Radiology 7/2015

01-07-2015 | Original Article

Corpus callosum thickness on mid-sagittal MRI as a marker of brain volume: a pilot study in children with HIV-related brain disease and controls

Authors: Savvas Andronikou, Christelle Ackermann, Barbara Laughton, Mark Cotton, Nicollette Tomazos, Bruce Spottiswoode, Katya Mauff, John M. Pettifor

Published in: Pediatric Radiology | Issue 7/2015

Login to get access

Abstract

Background

Corpus callosum thickness measurement on mid-sagittal MRI may be a surrogate marker of brain volume. This is important for evaluation of diseases causing brain volume gain or loss, such as HIV-related brain disease and HIV encephalopathy.

Objective

To determine if thickness of the corpus callosum on mid-sagittal MRI is a surrogate marker of brain volume in children with HIV-related brain disease and in controls without HIV.

Materials and methods

A retrospective MRI analysis in children (<5 years old) with HIV-related brain disease and controls used a custom-developed semi-automated tool, which divided the midline corpus callosum and measured its thickness in multiple locations. Brain volume was determined using volumetric analysis. Overall corpus callosum thickness and thickness of segments of the corpus callosum were correlated with overall and segmented (grey and white matter) brain volume.

Results

Forty-four children (33 HIV-infected patients and 11 controls) were included. Significant correlations included overall corpus callosum (mean) and total brain volume (P = 0.05); prefrontal corpus callosum maximum with white matter volume (P = 0.02); premotor corpus callosum mean with total brain volume (P = 0.04) and white matter volume (P = 0.02), premotor corpus callosum maximum with white matter volume (P = 0.02) and sensory corpus callosum mean with total brain volume (P = 0.02).

Conclusion

Corpus callosum thickness correlates with brain volume both in HIV-infected patients and controls.
Literature
1.
go back to reference Gavin P, Yogev R (1999) Central nervous system abnormalities in pediatric human immunodeficiency virus infection. Pediatr Neurosurg 31:115–123PubMedCrossRef Gavin P, Yogev R (1999) Central nervous system abnormalities in pediatric human immunodeficiency virus infection. Pediatr Neurosurg 31:115–123PubMedCrossRef
2.
go back to reference Fowler MG (1994) Pediatric HIV infection: neurologic and neuropsychologic findings. Acta Paediatr Suppl 400:59–62PubMedCrossRef Fowler MG (1994) Pediatric HIV infection: neurologic and neuropsychologic findings. Acta Paediatr Suppl 400:59–62PubMedCrossRef
3.
go back to reference Mitchell W (2001) Neurological and developmental effects of HIV and AIDS in children and adolescents. Ment Retard Dev Disabil Res Rev 7:211–216PubMedCrossRef Mitchell W (2001) Neurological and developmental effects of HIV and AIDS in children and adolescents. Ment Retard Dev Disabil Res Rev 7:211–216PubMedCrossRef
4.
go back to reference Sanchez-Ramon S, Resino S, Bellon Cano JM et al (2003) Neuroprotective effects of early antiretrovirals in vertical HIV infection. Pediatr Neurol 29:218–221PubMedCrossRef Sanchez-Ramon S, Resino S, Bellon Cano JM et al (2003) Neuroprotective effects of early antiretrovirals in vertical HIV infection. Pediatr Neurol 29:218–221PubMedCrossRef
5.
go back to reference Ances BM, Ortega M, Vaida F et al (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 59:469–477PubMedCentralPubMedCrossRef Ances BM, Ortega M, Vaida F et al (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 59:469–477PubMedCentralPubMedCrossRef
6.
go back to reference Schmitt B, Seeger J, Kreuz W et al (1991) Central nervous system involvement of children with HIV infection. Dev Med Child Neurol 33:535–540PubMedCrossRef Schmitt B, Seeger J, Kreuz W et al (1991) Central nervous system involvement of children with HIV infection. Dev Med Child Neurol 33:535–540PubMedCrossRef
7.
go back to reference Czornyj LA (2006) Encephalopathy in children infected by vertically transmitted human immunodeficiency virus. Rev Neurol 42:743–753PubMed Czornyj LA (2006) Encephalopathy in children infected by vertically transmitted human immunodeficiency virus. Rev Neurol 42:743–753PubMed
8.
go back to reference Shanbhag MC, Rutstein RM, Zaoutis T et al (2005) Neurocognitive functioning in pediatric human immunodeficiency virus infection: effects of combined therapy. Arch Pediatr Adolesc Med 159:651–656PubMedCrossRef Shanbhag MC, Rutstein RM, Zaoutis T et al (2005) Neurocognitive functioning in pediatric human immunodeficiency virus infection: effects of combined therapy. Arch Pediatr Adolesc Med 159:651–656PubMedCrossRef
9.
10.
go back to reference Dewey J, Hana G, Russell T et al (2010) Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. Neuroimage 51:1334–1344PubMedCentralPubMedCrossRef Dewey J, Hana G, Russell T et al (2010) Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. Neuroimage 51:1334–1344PubMedCentralPubMedCrossRef
11.
go back to reference Thompson PM, Dutton RA, Hayashi KM et al (2006) 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. Neuroimage 31:12–23PubMedCrossRef Thompson PM, Dutton RA, Hayashi KM et al (2006) 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. Neuroimage 31:12–23PubMedCrossRef
12.
go back to reference Andronikou S, Spottiswoode BS, Tomazos N (2012) A semi-automated method for measuring thickness and white matter integrity of the corpus callosum. SAfr J Rad 16:130–133 Andronikou S, Spottiswoode BS, Tomazos N (2012) A semi-automated method for measuring thickness and white matter integrity of the corpus callosum. SAfr J Rad 16:130–133
13.
14.
go back to reference Garel C, Cont I, Alberti C et al (2011) Biometry of the corpus callosum in children: MR imaging reference data. AJNR Am J Neuroradiol 32:1436–1443PubMedCrossRef Garel C, Cont I, Alberti C et al (2011) Biometry of the corpus callosum in children: MR imaging reference data. AJNR Am J Neuroradiol 32:1436–1443PubMedCrossRef
15.
go back to reference Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994PubMedCrossRef Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994PubMedCrossRef
16.
go back to reference Dougherty RF, Ben-Shachar M, Deutsch G et al (2005) Occipital-callosal pathways in children: Validation and atlas development. Ann N Y Acad Sci 1064:98–112PubMedCrossRef Dougherty RF, Ben-Shachar M, Deutsch G et al (2005) Occipital-callosal pathways in children: Validation and atlas development. Ann N Y Acad Sci 1064:98–112PubMedCrossRef
17.
go back to reference Hasan KM, Kamali A, Iftikhar A et al (2009) Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res 1249:91–100PubMedCentralPubMedCrossRef Hasan KM, Kamali A, Iftikhar A et al (2009) Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res 1249:91–100PubMedCentralPubMedCrossRef
18.
go back to reference Carone DA, Benedict RH, Dwyer MG et al (2006) Semi-automatic brain region extraction (SABRE) reveals superior cortical and deep gray matter atrophy in MS. Neuroimage 29:505–514PubMedCrossRef Carone DA, Benedict RH, Dwyer MG et al (2006) Semi-automatic brain region extraction (SABRE) reveals superior cortical and deep gray matter atrophy in MS. Neuroimage 29:505–514PubMedCrossRef
19.
go back to reference von Bezing H, Andronikou S, van Toorn R et al (2012) Are linear measurements and computerized volumetric ratios determined from axial MRI useful for diagnosing hydrocephalus in children with tuberculous meningitis? Childs Nerv Syst 28:79–85CrossRef von Bezing H, Andronikou S, van Toorn R et al (2012) Are linear measurements and computerized volumetric ratios determined from axial MRI useful for diagnosing hydrocephalus in children with tuberculous meningitis? Childs Nerv Syst 28:79–85CrossRef
20.
go back to reference Giedd JN, Rumsey JM, Castellanos FX et al (1996) A quantitative MRI study of the corpus callosum in children and adolescents. Brain Res Dev Brain Res 91:274–280PubMedCrossRef Giedd JN, Rumsey JM, Castellanos FX et al (1996) A quantitative MRI study of the corpus callosum in children and adolescents. Brain Res Dev Brain Res 91:274–280PubMedCrossRef
21.
go back to reference Yang Y, Phillips OR, Kan E et al (2012) Callosal thickness reductions relate to facial dysmorphology in fetal alcohol spectrum disorders. Alcohol Clin Exp Res 36:798–806PubMedCentralPubMedCrossRef Yang Y, Phillips OR, Kan E et al (2012) Callosal thickness reductions relate to facial dysmorphology in fetal alcohol spectrum disorders. Alcohol Clin Exp Res 36:798–806PubMedCentralPubMedCrossRef
23.
go back to reference Wilde EA, Chu Z, Bigler ED et al (2006) Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J Neurotrauma 23:1412–1426PubMedCrossRef Wilde EA, Chu Z, Bigler ED et al (2006) Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J Neurotrauma 23:1412–1426PubMedCrossRef
24.
go back to reference Thurnher MM, Schindler EG, Thurnher SA et al (2000) Highly active antiretroviral therapy for patients with AIDS dementia complex: effect on MR imaging findings and clinical course. AJNR Am J Neuroradiol 21:670–678PubMed Thurnher MM, Schindler EG, Thurnher SA et al (2000) Highly active antiretroviral therapy for patients with AIDS dementia complex: effect on MR imaging findings and clinical course. AJNR Am J Neuroradiol 21:670–678PubMed
25.
go back to reference States LJ, Zimmerman RA, Rutstein RM (1997) Imaging of pediatric central nervous system HIV infection. Neuroimaging Clin N Am 7:321–339PubMed States LJ, Zimmerman RA, Rutstein RM (1997) Imaging of pediatric central nervous system HIV infection. Neuroimaging Clin N Am 7:321–339PubMed
26.
go back to reference Kollar K, Jelenik Z, Hegelsberger E (2003) Neurologic aspects of HIV infections–follow-up of pediatric patients. Ideggyogy Sz 56:397–404PubMed Kollar K, Jelenik Z, Hegelsberger E (2003) Neurologic aspects of HIV infections–follow-up of pediatric patients. Ideggyogy Sz 56:397–404PubMed
27.
go back to reference Tucker KA, Robertson KR, Lin W et al (2004) Neuroimaging in human immunodeficiency virus infection. J Neuroimmunol 157:153–162PubMedCrossRef Tucker KA, Robertson KR, Lin W et al (2004) Neuroimaging in human immunodeficiency virus infection. J Neuroimmunol 157:153–162PubMedCrossRef
28.
go back to reference Patsalides AD, Wood LV, Atac GK et al (2002) Cerebrovascular disease in HIV-infected pediatric patients: neuroimaging findings. AJR Am J Roentgenol 179:999–1003PubMedCrossRef Patsalides AD, Wood LV, Atac GK et al (2002) Cerebrovascular disease in HIV-infected pediatric patients: neuroimaging findings. AJR Am J Roentgenol 179:999–1003PubMedCrossRef
29.
go back to reference Spreer J, Enenkel-Stoodt S, Funk M et al (1994) Neuroradiological findings in perinatally HIV-infected children. Röfo 161:106–112PubMed Spreer J, Enenkel-Stoodt S, Funk M et al (1994) Neuroradiological findings in perinatally HIV-infected children. Röfo 161:106–112PubMed
30.
go back to reference Johann-Liang R, Lin K, Cervia J et al (1998) Neuroimaging findings in children perinatally infected with the human immunodeficiency virus. Pediatr Infect Dis J 17:753–754PubMedCrossRef Johann-Liang R, Lin K, Cervia J et al (1998) Neuroimaging findings in children perinatally infected with the human immunodeficiency virus. Pediatr Infect Dis J 17:753–754PubMedCrossRef
31.
go back to reference Laughton B, Springer P, Grove D et al (2010) Longitudinal developmental profile of children from low socio-economic circumstances in Cape Town, using the 1996 Griffiths Mental Development Scales. SAJCH 4:106–111PubMedCentralPubMed Laughton B, Springer P, Grove D et al (2010) Longitudinal developmental profile of children from low socio-economic circumstances in Cape Town, using the 1996 Griffiths Mental Development Scales. SAJCH 4:106–111PubMedCentralPubMed
32.
go back to reference Oelschlaeger C, Dziewas R, Reichelt D et al (2010) Severe leukoencephalopathy with fulminant cerebral edema reflecting immune reconstitution inflammatory syndrome during HIV infection: a case report. J Med Case Rep 4:214PubMedCentralPubMedCrossRef Oelschlaeger C, Dziewas R, Reichelt D et al (2010) Severe leukoencephalopathy with fulminant cerebral edema reflecting immune reconstitution inflammatory syndrome during HIV infection: a case report. J Med Case Rep 4:214PubMedCentralPubMedCrossRef
33.
go back to reference Atalabi OM, Lagunju IA, Tongo OO et al (2010) Cranial magnetic resonance imaging findings in kwashiorkor. Int J Neurosci 120:23–27PubMedCrossRef Atalabi OM, Lagunju IA, Tongo OO et al (2010) Cranial magnetic resonance imaging findings in kwashiorkor. Int J Neurosci 120:23–27PubMedCrossRef
34.
go back to reference Cohen RA, Harezlak J, Schifitto G et al (2010) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16:25–32PubMedCentralPubMedCrossRef Cohen RA, Harezlak J, Schifitto G et al (2010) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16:25–32PubMedCentralPubMedCrossRef
35.
36.
go back to reference Westerhausen R, Luders E, Specht K et al (2011) Structural and functional reorganization of the corpus callosum between the age of 6 and 8 years. Cereb Cortex 21:1012–1017PubMedCentralPubMedCrossRef Westerhausen R, Luders E, Specht K et al (2011) Structural and functional reorganization of the corpus callosum between the age of 6 and 8 years. Cereb Cortex 21:1012–1017PubMedCentralPubMedCrossRef
37.
go back to reference Luders E, Thompson PM, Narr KL et al (2011) The link between callosal thickness and intelligence in healthy children and adolescents. Neuroimage 54:1823–1830PubMedCentralPubMedCrossRef Luders E, Thompson PM, Narr KL et al (2011) The link between callosal thickness and intelligence in healthy children and adolescents. Neuroimage 54:1823–1830PubMedCentralPubMedCrossRef
38.
go back to reference Northam GB, Liegeois F, Chong WK et al (2011) Total brain white matter is a major determinant of IQ in adolescents born preterm. Ann Neurol 69:702–711PubMedCrossRef Northam GB, Liegeois F, Chong WK et al (2011) Total brain white matter is a major determinant of IQ in adolescents born preterm. Ann Neurol 69:702–711PubMedCrossRef
39.
go back to reference Narberhaus A, Segarra D, Caldu X et al (2007) Gestational age at preterm birth in relation to corpus callosum and general cognitive outcome in adolescents. J Child Neurol 22:761–765PubMedCrossRef Narberhaus A, Segarra D, Caldu X et al (2007) Gestational age at preterm birth in relation to corpus callosum and general cognitive outcome in adolescents. J Child Neurol 22:761–765PubMedCrossRef
40.
go back to reference Adamson CL, Wood AG, Chen J et al (2011) Thickness profile generation for the corpus callosum using Laplace’s equation. Hum Brain Mapp 32:2131–2140PubMedCrossRef Adamson CL, Wood AG, Chen J et al (2011) Thickness profile generation for the corpus callosum using Laplace’s equation. Hum Brain Mapp 32:2131–2140PubMedCrossRef
Metadata
Title
Corpus callosum thickness on mid-sagittal MRI as a marker of brain volume: a pilot study in children with HIV-related brain disease and controls
Authors
Savvas Andronikou
Christelle Ackermann
Barbara Laughton
Mark Cotton
Nicollette Tomazos
Bruce Spottiswoode
Katya Mauff
John M. Pettifor
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 7/2015
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-014-3255-y

Other articles of this Issue 7/2015

Pediatric Radiology 7/2015 Go to the issue

Hermes

Hermes