Skip to main content
Top
Published in: Urolithiasis 6/2015

01-11-2015 | Original Paper

Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat

Authors: Jonathan M. Whittamore, Marguerite Hatch

Published in: Urolithiasis | Issue 6/2015

Login to get access

Abstract

Urinary oxalate excretion is reduced in rats during a chronic metabolic acidosis, but how this is achieved is not clear. In this report, we re-examine our prior work on the effects of a metabolic acidosis on urinary oxalate handling [Green et al., Am J Physiol Ren Physiol 289(3):F536–F543, 2005], offering a more detailed analysis and interpretation of the data, together with new, previously unpublished observations revealing a marked impact on intestinal oxalate transport. Sprague–Dawley rats were provided with 0.28 M ammonium chloride in their drinking water for either 4 or 14 days followed by 24 h urine collections, blood-gas and serum ion analysis, and measurements of 14C-oxalate fluxes across isolated segments of the distal colon. Urinary oxalate excretion was significantly reduced by 75 % after just 4 days compared to control rats, and this was similarly sustained at 14 days. Oxalate:creatinine clearance ratios indicated enhanced net re-absorption of oxalate by the kidney during a metabolic acidosis, but this was not associated with any substantive changes to serum oxalate levels. In the distal colon, oxalate transport was dramatically altered from net absorption in controls (6.20 ± 0.63 pmol cm−2 h−1), to net secretion in rats with a metabolic acidosis (−5.19 ± 1.18 and −2.07 ± 1.05 pmol cm−2 h−1 at 4 and 14 days, respectively). Although we cannot rule out modifications to bi-directional oxalate movements along the proximal tubule, these findings support a gut-kidney axis in the management of oxalate homeostasis, where this shift in renal handling during a metabolic acidosis is associated with compensatory adaptations by the intestine.
Literature
9.
go back to reference Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of Primary Hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300(3):G461–G469. doi:10.1152/ajpgi.00434.2010 CrossRefPubMedCentralPubMed Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of Primary Hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300(3):G461–G469. doi:10.​1152/​ajpgi.​00434.​2010 CrossRefPubMedCentralPubMed
12.
go back to reference Costello JF, Smith M, Stolarski C, Sadovnic MJ (1992) Extrarenal clearance of oxalate increases with progression of renal-failure in the rat. J Am Soc Nephrol 3(5):1098–1104PubMed Costello JF, Smith M, Stolarski C, Sadovnic MJ (1992) Extrarenal clearance of oxalate increases with progression of renal-failure in the rat. J Am Soc Nephrol 3(5):1098–1104PubMed
13.
go back to reference Hatch M, Freel RW, Vaziri ND (1994) Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol 5(6):1339–1343PubMed Hatch M, Freel RW, Vaziri ND (1994) Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol 5(6):1339–1343PubMed
18.
go back to reference Nowik M, Kampik NB, Mihailova M, Eladari D, Wagner CA (2010) Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats—species differences and technical considerations. Cell Physiol Biochem 26(6):1059–1072. doi:10.1159/000323984 CrossRefPubMed Nowik M, Kampik NB, Mihailova M, Eladari D, Wagner CA (2010) Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats—species differences and technical considerations. Cell Physiol Biochem 26(6):1059–1072. doi:10.​1159/​000323984 CrossRefPubMed
19.
go back to reference Bushinsky DA, Favus MJ, Schneider AB, Sen PK, Sherwood LM, Coe FL (1982) Effects of metabolic-acidosis on PTH and 1,25(OH)2D3 response to low calcium diet. Am J Physiol Ren Physiol 243(6):F570–F575 Bushinsky DA, Favus MJ, Schneider AB, Sen PK, Sherwood LM, Coe FL (1982) Effects of metabolic-acidosis on PTH and 1,25(OH)2D3 response to low calcium diet. Am J Physiol Ren Physiol 243(6):F570–F575
20.
go back to reference Sajo IM, Goldstein MB, Sonnenberg H, Stinebaugh BJ, Wilson DR, Halperin ML (1981) Sites of ammonia addition to tubular fluid in rats with chronic metabolic-acidosis. Kidney Int 20(3):353–358. doi:10.1038/ki.1981.146 CrossRefPubMed Sajo IM, Goldstein MB, Sonnenberg H, Stinebaugh BJ, Wilson DR, Halperin ML (1981) Sites of ammonia addition to tubular fluid in rats with chronic metabolic-acidosis. Kidney Int 20(3):353–358. doi:10.​1038/​ki.​1981.​146 CrossRefPubMed
21.
go back to reference Rizzo M, Capasso G, Bleich M, Pica A, Grimaldi D, Bindels RJM, Greger R (2000) Effect of chronic metabolic acidosis on calbindin expression along the rat distal tubule. J Am Soc Nephrol 11(2):203–210PubMed Rizzo M, Capasso G, Bleich M, Pica A, Grimaldi D, Bindels RJM, Greger R (2000) Effect of chronic metabolic acidosis on calbindin expression along the rat distal tubule. J Am Soc Nephrol 11(2):203–210PubMed
22.
go back to reference Bastani B, Purcell H, Hemken P, Trigg D, Gluck S (1991) Expression and distribution of renal vacuolar proton-translocating adenosine-triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Investig 88(1):126–136. doi:10.1172/jci115268 CrossRefPubMedCentralPubMed Bastani B, Purcell H, Hemken P, Trigg D, Gluck S (1991) Expression and distribution of renal vacuolar proton-translocating adenosine-triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Investig 88(1):126–136. doi:10.​1172/​jci115268 CrossRefPubMedCentralPubMed
23.
go back to reference Ambuhl PM, Amemiya M, Danczkay M, Lotscher M, Kaissling B, Moe OW, Preisig PA, Alpern RJ (1996) Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol Ren Fluid Electrol Physiol 271(4):F917–F925 Ambuhl PM, Amemiya M, Danczkay M, Lotscher M, Kaissling B, Moe OW, Preisig PA, Alpern RJ (1996) Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol Ren Fluid Electrol Physiol 271(4):F917–F925
26.
go back to reference Parry DM, Brosnan JT (1978) Glutamine metabolism in kidney during induction of, and recovery from, metabolic-acidosis in rat. Biochem J 174(2):387–396CrossRefPubMedCentralPubMed Parry DM, Brosnan JT (1978) Glutamine metabolism in kidney during induction of, and recovery from, metabolic-acidosis in rat. Biochem J 174(2):387–396CrossRefPubMedCentralPubMed
28.
go back to reference Feldman GM (1989) Effect of chronic metabolic-acidosis on net electrolyte transport in rat colon. Am J Physiol Gastrointest Liver Physiol 256(6):G1036–G1040 Feldman GM (1989) Effect of chronic metabolic-acidosis on net electrolyte transport in rat colon. Am J Physiol Gastrointest Liver Physiol 256(6):G1036–G1040
29.
go back to reference Tosco M, Porta C, Sironi C, Laforenza U, Orsenigo MN (2011) Acute and chronic acidosis influence on antioxidant equipment and transport proteins of rat jejunal enterocyte. Cell Biol Int 35(4):345–353. doi:10.1042/cbi20100428 CrossRefPubMed Tosco M, Porta C, Sironi C, Laforenza U, Orsenigo MN (2011) Acute and chronic acidosis influence on antioxidant equipment and transport proteins of rat jejunal enterocyte. Cell Biol Int 35(4):345–353. doi:10.​1042/​cbi20100428 CrossRefPubMed
32.
go back to reference Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal-function—new insights into old concepts. Clin Chem 38(10):1933–1953PubMed Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal-function—new insights into old concepts. Clin Chem 38(10):1933–1953PubMed
33.
35.
go back to reference Wang T, Egbert AL, Aronson PS, Giebisch G (1998) Effect of metabolic acidosis on NaCl transport in the proximal tubule. Am J Physiol Ren Physiol 274(6):F1015–F1019 Wang T, Egbert AL, Aronson PS, Giebisch G (1998) Effect of metabolic acidosis on NaCl transport in the proximal tubule. Am J Physiol Ren Physiol 274(6):F1015–F1019
37.
go back to reference Jiang ZR, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38(4):474–478. doi:10.1038/ng1762 CrossRefPubMed Jiang ZR, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38(4):474–478. doi:10.​1038/​ng1762 CrossRefPubMed
38.
go back to reference Xie QH, Welch R, Mercado A, Romero MF, Mount DB (2002) Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Ren Physiol 283(4):F826–F838. doi:10.1152/ajprenal.00079.2002 CrossRef Xie QH, Welch R, Mercado A, Romero MF, Mount DB (2002) Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Ren Physiol 283(4):F826–F838. doi:10.​1152/​ajprenal.​00079.​2002 CrossRef
39.
go back to reference Puttaparthi K, Markovich D, Halaihel N, Wilson P, Zajicek HK, Wang HM, Biber J, Murer H, Rogers T, Levi M (1999) Metabolic acidosis regulates rat renal Na-Si cotransport activity. Am J Physiol Cell Physiol 276(6):C1398–C1404 Puttaparthi K, Markovich D, Halaihel N, Wilson P, Zajicek HK, Wang HM, Biber J, Murer H, Rogers T, Levi M (1999) Metabolic acidosis regulates rat renal Na-Si cotransport activity. Am J Physiol Cell Physiol 276(6):C1398–C1404
40.
go back to reference Ohana E, Shcheynikov N, Moe OW, Muallem S (2013) SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol 24(10):1617–1626CrossRefPubMedCentralPubMed Ohana E, Shcheynikov N, Moe OW, Muallem S (2013) SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol 24(10):1617–1626CrossRefPubMedCentralPubMed
41.
go back to reference Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol Ren Physiol 275(1):F79–F87 Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol Ren Physiol 275(1):F79–F87
42.
43.
go back to reference Feldman GM, Charney AN (1980) Effect of acute metabolic alkalosis and acidosis on intestinal electrolyte transport in vivo. Am J Physiol 239(5):G427–G436PubMed Feldman GM, Charney AN (1980) Effect of acute metabolic alkalosis and acidosis on intestinal electrolyte transport in vivo. Am J Physiol 239(5):G427–G436PubMed
44.
go back to reference Charney AN, Haskell LP (1984) Relative effects of systemic pH, PCO2, and HCO3 concentration on colonic ion-transport. Am J Physiol Gastrointest Liver Physiol 246(2):G159–G165 Charney AN, Haskell LP (1984) Relative effects of systemic pH, PCO2, and HCO3 concentration on colonic ion-transport. Am J Physiol Gastrointest Liver Physiol 246(2):G159–G165
45.
go back to reference Bachmann O, Seidler U (2011) News from the end of the gut-How the highly segmental pattern of colonic HCO3 − transport relates to absorptive function and mucosal integrity. Biol Pharm Bull 34(6):794–802CrossRefPubMed Bachmann O, Seidler U (2011) News from the end of the gut-How the highly segmental pattern of colonic HCO3 transport relates to absorptive function and mucosal integrity. Biol Pharm Bull 34(6):794–802CrossRefPubMed
46.
go back to reference Rajendran VM, Binder HJ (2000) Characterization and molecular localization of anion transporters in colonic epithelial cells. In: Schulzke JD, Fromm M, Riecken EO, Binder HJ (eds) Epithelial transport and barrier function: pathomechanisms in gastrointestinal disorders, vol 915. Annals of the New York Academy of Sciences, pp 15–29 Rajendran VM, Binder HJ (2000) Characterization and molecular localization of anion transporters in colonic epithelial cells. In: Schulzke JD, Fromm M, Riecken EO, Binder HJ (eds) Epithelial transport and barrier function: pathomechanisms in gastrointestinal disorders, vol 915. Annals of the New York Academy of Sciences, pp 15–29
47.
go back to reference Rajendran VM, Binder HJ (1999) Distribution and regulation of apical Cl/anion exchanges in surface and crypt cells of rat distal colon. Am J Physiol Gastrointest Liver Physiol 276(1):G132–G137 Rajendran VM, Binder HJ (1999) Distribution and regulation of apical Cl/anion exchanges in surface and crypt cells of rat distal colon. Am J Physiol Gastrointest Liver Physiol 276(1):G132–G137
50.
go back to reference Wagner JD, Kurtin P, Charney AN (1985) Effect of systemic acid-base-disorders on colonic intracellular pH and ion-transport. Am J Physiol Gastrointest Liver Physiol 249(1):G39–G47 Wagner JD, Kurtin P, Charney AN (1985) Effect of systemic acid-base-disorders on colonic intracellular pH and ion-transport. Am J Physiol Gastrointest Liver Physiol 249(1):G39–G47
51.
go back to reference Lucioni A, Womack C, Musch MW, Rocha FL, Bookstein C, Chang EB (2002) Metabolic acidosis in rats increases intestinal NHE2 and NHE3 expression and function. Am J Physiol Gastrointest Liver Physiol 283(1):G51–G56. doi:10.1152/ajpgi.00529.2001 CrossRefPubMed Lucioni A, Womack C, Musch MW, Rocha FL, Bookstein C, Chang EB (2002) Metabolic acidosis in rats increases intestinal NHE2 and NHE3 expression and function. Am J Physiol Gastrointest Liver Physiol 283(1):G51–G56. doi:10.​1152/​ajpgi.​00529.​2001 CrossRefPubMed
52.
go back to reference Charoenphandhu N, Tudpor K, Pulsook N, Krishnamra N (2006) Chronic metabolic acidosis stimulated transcellular and solvent drag-induced calcium transport in the duodenum of female rats. Am J Physiol Gastrointest Liver Physiol 291(3):G446–G455. doi:10.1152/ajpgi.00108.2006 CrossRefPubMed Charoenphandhu N, Tudpor K, Pulsook N, Krishnamra N (2006) Chronic metabolic acidosis stimulated transcellular and solvent drag-induced calcium transport in the duodenum of female rats. Am J Physiol Gastrointest Liver Physiol 291(3):G446–G455. doi:10.​1152/​ajpgi.​00108.​2006 CrossRefPubMed
54.
go back to reference Wongdee K, Teerapornpuntakit J, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2009) Gene expression profile of duodenal epithelial cells in response to chronic metabolic acidosis. Mol Cell Biochem 321(1–2):173–188. doi:10.1007/s11010-008-9931-1 CrossRefPubMed Wongdee K, Teerapornpuntakit J, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2009) Gene expression profile of duodenal epithelial cells in response to chronic metabolic acidosis. Mol Cell Biochem 321(1–2):173–188. doi:10.​1007/​s11010-008-9931-1 CrossRefPubMed
Metadata
Title
Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat
Authors
Jonathan M. Whittamore
Marguerite Hatch
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Urolithiasis / Issue 6/2015
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-015-0801-5

Other articles of this Issue 6/2015

Urolithiasis 6/2015 Go to the issue