Skip to main content
Top
Published in: Urolithiasis 1/2015

01-01-2015 | Invited Review

Interstitial calcinosis in renal papillae of genetically engineered mouse models: relation to Randall’s plaques

Author: Xue-Ru Wu

Published in: Urolithiasis | Special Issue 1/2015

Login to get access

Abstract

Genetically engineered mouse models (GEMMs) have been highly instrumental in elucidating gene functions and molecular pathogenesis of human diseases, although their use in studying kidney stone formation or nephrolithiasis remains relatively limited. This review intends to provide an overview of several knockout mouse models that develop interstitial calcinosis in the renal papillae. Included herein are mice deficient for Tamm-Horsfall protein (THP; also named uromodulin), osteopontin (OPN), both THP and OPN, Na+-phosphate cotransporter Type II (Npt2a) and Na+/H+ exchanger regulatory factor (NHERF-1). The baseline information of each protein is summarized, along with key morphological features of the interstitial calcium deposits in mice lacking these proteins. Attempts are made to correlate the papillary interstitial deposits found in GEMMs with Randall’s plaques, the latter considered precursors of idiopathic calcium stones in patients. The pathophysiology that underlies the renal calcinosis in the knockout mice is also discussed wherever information is available. Not all the knockout models are allocated equal space because some are more extensively characterized than others. Despite the inroads already made, the exact physiological underpinning, origin, evolution and fate of the papillary interstitial calcinosis in the GEMMs remain incompletely defined. Greater investigative efforts are warranted to pin down the precise role of the papillary interstitial calcinosis in nephrolithiasis using the existing models. Additionally, more sophisticated, second-generation GEMMs that allow gene inactivation in a time-controlled manner and “compound mice” that bear several genetic alterations are urgently needed, in light of mounting evidence that nephrolithiasis is a multifactorial, multi-stage and polygenic disease.
Literature
1.
go back to reference Doyle A, McGarry MP, Lee NA, Lee JJ (2012) The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res 21:327–349PubMedCentralPubMed Doyle A, McGarry MP, Lee NA, Lee JJ (2012) The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res 21:327–349PubMedCentralPubMed
2.
go back to reference Singh M, Murriel CL, Johnson L (2012) Genetically engineered mouse models: closing the gap between preclinical data and trial outcomes. Cancer Res 72:2695–2700PubMed Singh M, Murriel CL, Johnson L (2012) Genetically engineered mouse models: closing the gap between preclinical data and trial outcomes. Cancer Res 72:2695–2700PubMed
3.
go back to reference Kohan DE (2008) Progress in gene targeting: using mutant mice to study renal function and disease. Kidney Int 74:427–437PubMed Kohan DE (2008) Progress in gene targeting: using mutant mice to study renal function and disease. Kidney Int 74:427–437PubMed
4.
go back to reference Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B (2002) Of mice and models: improved animal models for biomedical research. Physiol Genomics 11:115–132PubMed Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B (2002) Of mice and models: improved animal models for biomedical research. Physiol Genomics 11:115–132PubMed
5.
go back to reference Zhou H, Liu Y, He F, Mo L, Sun TT, Wu XR (2010) Temporally and spatially controllable gene expression and knockout in mouse urothelium. Am J Physiol Renal Physiol 299:F387–F395PubMedCentralPubMed Zhou H, Liu Y, He F, Mo L, Sun TT, Wu XR (2010) Temporally and spatially controllable gene expression and knockout in mouse urothelium. Am J Physiol Renal Physiol 299:F387–F395PubMedCentralPubMed
6.
go back to reference Jaeger P (1996) Genetic versus environmental factors in renal stone disease. Curr Opin Nephrol Hypertens 5:342–346PubMed Jaeger P (1996) Genetic versus environmental factors in renal stone disease. Curr Opin Nephrol Hypertens 5:342–346PubMed
7.
go back to reference Robertson WG (1986) Pathophysiology of stone formation. Urol Int 41:329–333PubMed Robertson WG (1986) Pathophysiology of stone formation. Urol Int 41:329–333PubMed
9.
go back to reference Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482PubMed Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482PubMed
10.
go back to reference Kumar V, Lieske JC (2006) Protein regulation of intrarenal crystallization. Curr Opin Nephrol Hypertens 15:374–380PubMed Kumar V, Lieske JC (2006) Protein regulation of intrarenal crystallization. Curr Opin Nephrol Hypertens 15:374–380PubMed
11.
go back to reference Mandel N (1994) Crystal–membrane interaction in kidney stone disease. J Am Soc Nephrol 5:S37–S45PubMed Mandel N (1994) Crystal–membrane interaction in kidney stone disease. J Am Soc Nephrol 5:S37–S45PubMed
12.
go back to reference Sakhaee K, Maalouf NM, Sinnott B (2012) Clinical review. Kidney stones 2012: pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 97:1847–1860PubMedCentralPubMed Sakhaee K, Maalouf NM, Sinnott B (2012) Clinical review. Kidney stones 2012: pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 97:1847–1860PubMedCentralPubMed
13.
go back to reference Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344PubMed Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344PubMed
14.
go back to reference Holmes RP, Ambrosius WT, Assimos DG (2005) Dietary oxalate loads and renal oxalate handling. J Urol 174:943–947 discussion 947PubMed Holmes RP, Ambrosius WT, Assimos DG (2005) Dietary oxalate loads and renal oxalate handling. J Urol 174:943–947 discussion 947PubMed
15.
go back to reference Bushinsky DA, Frick KK, Nehrke K (2006) Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens 15:403–418PubMed Bushinsky DA, Frick KK, Nehrke K (2006) Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens 15:403–418PubMed
16.
go back to reference Park S, Pearle MS (2007) Pathophysiology and management of calcium stones. Urol Clin North Am 34:323–334PubMed Park S, Pearle MS (2007) Pathophysiology and management of calcium stones. Urol Clin North Am 34:323–334PubMed
17.
go back to reference Holmes RP, Assimos DG, Goodman HO (1998) Molecular basis of inherited renal lithiasis. Curr Opin Urol 8:315–319PubMed Holmes RP, Assimos DG, Goodman HO (1998) Molecular basis of inherited renal lithiasis. Curr Opin Urol 8:315–319PubMed
18.
go back to reference Lieske JC, Toback FG (2000) Renal cell–urinary crystal interactions. Curr Opin Nephrol Hypertens 9:349–355PubMed Lieske JC, Toback FG (2000) Renal cell–urinary crystal interactions. Curr Opin Nephrol Hypertens 9:349–355PubMed
19.
go back to reference Koul HK, Koul S, Fu S, Santosham V, Seikhon A, Menon M (1999) Oxalate: from crystal formation to crystal retention. J Am Soc Nephrol 10(Suppl 14):S417–S421PubMed Koul HK, Koul S, Fu S, Santosham V, Seikhon A, Menon M (1999) Oxalate: from crystal formation to crystal retention. J Am Soc Nephrol 10(Suppl 14):S417–S421PubMed
20.
go back to reference Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMedCentralPubMed Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMedCentralPubMed
21.
go back to reference Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40:1–12PubMedCentralPubMed Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40:1–12PubMedCentralPubMed
23.
go back to reference Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, Phillips CL, Bonsib S, Worcester EM, Sommer AJ, Kim SC, Tinmouth WW, Grynpas M (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576–591PubMed Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, Phillips CL, Bonsib S, Worcester EM, Sommer AJ, Kim SC, Tinmouth WW, Grynpas M (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576–591PubMed
24.
go back to reference Matlaga BR, Coe FL, Evan AP, Lingeman JE (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38PubMed Matlaga BR, Coe FL, Evan AP, Lingeman JE (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38PubMed
25.
go back to reference Kumar S, Muchmore A (1990) Tamm-Horsfall protein—uromodulin (1950–1990). Kidney Int 37:1395–1401PubMed Kumar S, Muchmore A (1990) Tamm-Horsfall protein—uromodulin (1950–1990). Kidney Int 37:1395–1401PubMed
26.
go back to reference Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42:658–676PubMed Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42:658–676PubMed
27.
go back to reference Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O (2011) The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 80:338–347PubMed Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O (2011) The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 80:338–347PubMed
28.
go back to reference El-Achkar TM, Wu XR (2012) Uromodulin in kidney injury: an instigator, bystander, or protector? Am J Kidney Dis 59:452–461PubMedCentralPubMed El-Achkar TM, Wu XR (2012) Uromodulin in kidney injury: an instigator, bystander, or protector? Am J Kidney Dis 59:452–461PubMedCentralPubMed
29.
go back to reference El-Achkar TM, Wu XR, Rauchman M, McCracken R, Kiefer S, Dagher PC (2008) Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am J Physiol Renal Physiol 295:F534–F544PubMed El-Achkar TM, Wu XR, Rauchman M, McCracken R, Kiefer S, Dagher PC (2008) Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am J Physiol Renal Physiol 295:F534–F544PubMed
30.
go back to reference El-Achkar TM, McCracken R, Rauchman M, Heitmeier MR, Al-Aly Z, Dagher PC, Wu XR (2011) Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am J Physiol Renal Physiol 300:F999–F1007PubMed El-Achkar TM, McCracken R, Rauchman M, Heitmeier MR, Al-Aly Z, Dagher PC, Wu XR (2011) Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am J Physiol Renal Physiol 300:F999–F1007PubMed
31.
go back to reference El-Achkar TM, McCracken R, Liu Y, Heitmeier MR, Bourgeois S, Ryerse J, Wu XR (2013) Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am J Physiol Renal Physiol 304:F1066–F1075PubMedCentralPubMed El-Achkar TM, McCracken R, Liu Y, Heitmeier MR, Bourgeois S, Ryerse J, Wu XR (2013) Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am J Physiol Renal Physiol 304:F1066–F1075PubMedCentralPubMed
32.
go back to reference Hession C, Decker JM, Sherblom AP, Kumar S, Yue CC, Mattaliano RJ, Tizard R, Kawashima E, Schmeissner U, Heletky S et al (1987) Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 237:1479–1484PubMed Hession C, Decker JM, Sherblom AP, Kumar S, Yue CC, Mattaliano RJ, Tizard R, Kawashima E, Schmeissner U, Heletky S et al (1987) Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 237:1479–1484PubMed
33.
go back to reference Muchmore AV, Decker JM (1985) Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 229:479–481PubMed Muchmore AV, Decker JM (1985) Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 229:479–481PubMed
34.
go back to reference Pennica D, Kohr WJ, Kuang WJ, Glaister D, Aggarwal BB, Chen EY, Goeddel DV (1987) Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236:83–88PubMed Pennica D, Kohr WJ, Kuang WJ, Glaister D, Aggarwal BB, Chen EY, Goeddel DV (1987) Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236:83–88PubMed
35.
go back to reference Yang H, Wu C, Zhao S, Guo J (2004) Identification and characterization of D8C, a novel domain present in liver-specific LZP, uromodulin and glycoprotein 2, mutated in familial juvenile hyperuricaemic nephropathy. FEBS Lett 578:236–238PubMed Yang H, Wu C, Zhao S, Guo J (2004) Identification and characterization of D8C, a novel domain present in liver-specific LZP, uromodulin and glycoprotein 2, mutated in familial juvenile hyperuricaemic nephropathy. FEBS Lett 578:236–238PubMed
36.
go back to reference Ma L, Liu Y, El-Achkar TM, Wu XR (2012) Molecular and cellular effects of Tamm-Horsfall protein mutations and their rescue by chemical chaperones. J Biol Chem 287:1290–1305PubMedCentralPubMed Ma L, Liu Y, El-Achkar TM, Wu XR (2012) Molecular and cellular effects of Tamm-Horsfall protein mutations and their rescue by chemical chaperones. J Biol Chem 287:1290–1305PubMedCentralPubMed
37.
go back to reference Nasr SH, Lucia JP, Galgano SJ, Markowitz GS, VD DA (2008) Uromodulin storage disease. Kidney Int 73:971–976PubMed Nasr SH, Lucia JP, Galgano SJ, Markowitz GS, VD DA (2008) Uromodulin storage disease. Kidney Int 73:971–976PubMed
38.
go back to reference Scolari F, Caridi G, Rampoldi L, Tardanico R, Izzi C, Pirulli D, Amoroso A, Casari G, Ghiggeri GM (2004) Uromodulin storage diseases: clinical aspects and mechanisms. Am J Kidney Dis 44:987–999PubMed Scolari F, Caridi G, Rampoldi L, Tardanico R, Izzi C, Pirulli D, Amoroso A, Casari G, Ghiggeri GM (2004) Uromodulin storage diseases: clinical aspects and mechanisms. Am J Kidney Dis 44:987–999PubMed
40.
go back to reference Serafini-Cessi F, Monti A, Cavallone D (2005) N-glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj J 22:383–394PubMed Serafini-Cessi F, Monti A, Cavallone D (2005) N-glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj J 22:383–394PubMed
41.
go back to reference Serafini-Cessi F, Dall’Olio F, Malagolini N (1984) High-mannose oligosaccharides from human Tamm-Horsfall glycoprotein. Biosci Rep 4:269–274PubMed Serafini-Cessi F, Dall’Olio F, Malagolini N (1984) High-mannose oligosaccharides from human Tamm-Horsfall glycoprotein. Biosci Rep 4:269–274PubMed
42.
go back to reference van Rooijen JJ, Voskamp AF, Kamerling JP, Vliegenthart JF (1999) Glycosylation sites and site-specific glycosylation in human Tamm-Horsfall glycoprotein. Glycobiology 9:21–30PubMed van Rooijen JJ, Voskamp AF, Kamerling JP, Vliegenthart JF (1999) Glycosylation sites and site-specific glycosylation in human Tamm-Horsfall glycoprotein. Glycobiology 9:21–30PubMed
43.
go back to reference Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR (2001) Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276:9924–9930PubMed Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR (2001) Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276:9924–9930PubMed
44.
go back to reference Cavallone D, Malagolini N, Monti A, Wu XR, Serafini-Cessi F (2004) Variation of high mannose chains of Tamm-Horsfall glycoprotein confers differential binding to type 1-fimbriated Escherichia coli. J Biol Chem 279:216–222PubMed Cavallone D, Malagolini N, Monti A, Wu XR, Serafini-Cessi F (2004) Variation of high mannose chains of Tamm-Horsfall glycoprotein confers differential binding to type 1-fimbriated Escherichia coli. J Biol Chem 279:216–222PubMed
45.
go back to reference Mo L, Zhu XH, Huang HY, Shapiro E, Hasty DL, Wu XR (2004) Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am J Physiol Renal Physiol 286:F795–F802PubMed Mo L, Zhu XH, Huang HY, Shapiro E, Hasty DL, Wu XR (2004) Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am J Physiol Renal Physiol 286:F795–F802PubMed
46.
go back to reference Bates JM, Raffi HM, Prasadan K, Mascarenhas R, Laszik Z, Maeda N, Hultgren SJ, Kumar S (2004) Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65:791–797PubMed Bates JM, Raffi HM, Prasadan K, Mascarenhas R, Laszik Z, Maeda N, Hultgren SJ, Kumar S (2004) Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65:791–797PubMed
47.
go back to reference Dou W, Thompson-Jaeger S, Laulederkind SJ, Becker JW, Montgomery J, Ruiz-Bustos E, Hasty DL, Ballou LR, Eastman PS, Srichai B, Breyer MD, Raghow R (2005) Defective expression of Tamm-Horsfall protein/uromodulin in COX-2-deficient mice increases their susceptibility to urinary tract infections. Am J Physiol Renal Physiol 289:F49–F60PubMed Dou W, Thompson-Jaeger S, Laulederkind SJ, Becker JW, Montgomery J, Ruiz-Bustos E, Hasty DL, Ballou LR, Eastman PS, Srichai B, Breyer MD, Raghow R (2005) Defective expression of Tamm-Horsfall protein/uromodulin in COX-2-deficient mice increases their susceptibility to urinary tract infections. Am J Physiol Renal Physiol 289:F49–F60PubMed
48.
go back to reference Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103PubMed Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103PubMed
49.
go back to reference Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165PubMedCentralPubMed Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165PubMedCentralPubMed
50.
go back to reference Wu XR, Sun TT, Medina JJ (1996) In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA 93:9630–9635PubMedCentralPubMed Wu XR, Sun TT, Medina JJ (1996) In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA 93:9630–9635PubMedCentralPubMed
51.
go back to reference Jovine L, Qi H, Williams Z, Litscher E, Wassarman PM (2002) The ZP domain is a conserved module for polymerization of extracellular proteins. Nat Cell Biol 4:457–461PubMed Jovine L, Qi H, Williams Z, Litscher E, Wassarman PM (2002) The ZP domain is a conserved module for polymerization of extracellular proteins. Nat Cell Biol 4:457–461PubMed
52.
go back to reference Weichhart T, Haidinger M, Horl WH, Saemann MD (2008) Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 38(Suppl 2):29–38PubMed Weichhart T, Haidinger M, Horl WH, Saemann MD (2008) Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 38(Suppl 2):29–38PubMed
53.
go back to reference Worcester EM (1996) Inhibitors of stone formation. Semin Nephrol 16:474–486PubMed Worcester EM (1996) Inhibitors of stone formation. Semin Nephrol 16:474–486PubMed
54.
go back to reference Chen WC, Lin HS, Chen HY, Shih CH, Li CW (2001) Effects of Tamm-Horsfall protein and albumin on calcium oxalate crystallization and importance of sialic acids. Mol Urol 5:1–5PubMed Chen WC, Lin HS, Chen HY, Shih CH, Li CW (2001) Effects of Tamm-Horsfall protein and albumin on calcium oxalate crystallization and importance of sialic acids. Mol Urol 5:1–5PubMed
55.
go back to reference Erwin DT, Kok DJ, Alam J, Vaughn J, Coker O, Carriere BT, Lindberg J, Husserl FE, Fuselier H Jr, Cole FE (1994) Calcium oxalate stone agglomeration reflects stone-forming activity: citrate inhibition depends on macromolecules larger than 30 kilodalton. Am J Kidney Dis 24:893–900PubMed Erwin DT, Kok DJ, Alam J, Vaughn J, Coker O, Carriere BT, Lindberg J, Husserl FE, Fuselier H Jr, Cole FE (1994) Calcium oxalate stone agglomeration reflects stone-forming activity: citrate inhibition depends on macromolecules larger than 30 kilodalton. Am J Kidney Dis 24:893–900PubMed
56.
go back to reference Fellstrom B, Danielson BG, Ljunghall S, Wikstrom B (1986) Crystal inhibition: the effects of polyanions on calcium oxalate crystal growth. Clin Chim Acta 158:229–235PubMed Fellstrom B, Danielson BG, Ljunghall S, Wikstrom B (1986) Crystal inhibition: the effects of polyanions on calcium oxalate crystal growth. Clin Chim Acta 158:229–235PubMed
57.
go back to reference Grover PK, Moritz RL, Simpson RJ, Ryall RL (1998) Inhibition of growth and aggregation of calcium oxalate crystals in vitro—a comparison of four human proteins. Eur J Biochem 253:637–644PubMed Grover PK, Moritz RL, Simpson RJ, Ryall RL (1998) Inhibition of growth and aggregation of calcium oxalate crystals in vitro—a comparison of four human proteins. Eur J Biochem 253:637–644PubMed
58.
go back to reference Hess B, Nakagawa Y, Coe FL (1989) Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am J Physiol 257:F99–F106PubMed Hess B, Nakagawa Y, Coe FL (1989) Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am J Physiol 257:F99–F106PubMed
59.
go back to reference Hess B (1992) Tamm-Horsfall glycoprotein—inhibitor or promoter of calcium oxalate monohydrate crystallization processes? Urol Res 20:83–86PubMed Hess B (1992) Tamm-Horsfall glycoprotein—inhibitor or promoter of calcium oxalate monohydrate crystallization processes? Urol Res 20:83–86PubMed
60.
go back to reference Hess B (1994) Tamm-Horsfall glycoprotein and calcium nephrolithiasis. Miner Electrolyte Metab 20:393–398PubMed Hess B (1994) Tamm-Horsfall glycoprotein and calcium nephrolithiasis. Miner Electrolyte Metab 20:393–398PubMed
61.
go back to reference Mo L, Huang HY, Zhu XH, Shapiro E, Hasty DL, Wu XR (2004) Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 66:1159–1166PubMed Mo L, Huang HY, Zhu XH, Shapiro E, Hasty DL, Wu XR (2004) Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 66:1159–1166PubMed
62.
go back to reference Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F, Khan SR, Lieske JC, Wu XR (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am J Physiol Renal Physiol 299:F469–F478PubMedCentralPubMed Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F, Khan SR, Lieske JC, Wu XR (2010) Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am J Physiol Renal Physiol 299:F469–F478PubMedCentralPubMed
63.
go back to reference Liu Y, El-Achkar TM, Wu XR (2012) Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J Biol Chem 287:16365–16378PubMedCentralPubMed Liu Y, El-Achkar TM, Wu XR (2012) Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J Biol Chem 287:16365–16378PubMedCentralPubMed
64.
go back to reference Wolf MT, Wu XR, Huang CL (2013) Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int 84:130–137PubMedCentralPubMed Wolf MT, Wu XR, Huang CL (2013) Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int 84:130–137PubMedCentralPubMed
65.
go back to reference Evan AP, Weinman EJ, Wu XR, Lingeman JE, Worcester EM, Coe FL (2010) Comparison of the pathology of interstitial plaque in human ICSF stone patients to NHERF-1 and THP-null mice. Urol Res 38:439–452PubMedCentralPubMed Evan AP, Weinman EJ, Wu XR, Lingeman JE, Worcester EM, Coe FL (2010) Comparison of the pathology of interstitial plaque in human ICSF stone patients to NHERF-1 and THP-null mice. Urol Res 38:439–452PubMedCentralPubMed
66.
go back to reference Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943PubMed Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943PubMed
67.
go back to reference Mollsten A, Torffvit O (2010) Tamm-Horsfall protein gene is associated with distal tubular dysfunction in patients with type 1 diabetes. Scand J Urol Nephrol 44:438–444PubMed Mollsten A, Torffvit O (2010) Tamm-Horsfall protein gene is associated with distal tubular dysfunction in patients with type 1 diabetes. Scand J Urol Nephrol 44:438–444PubMed
68.
go back to reference Sejdiu I, Torffvit O (2008) Decreased urinary concentration of Tamm-Horsfall protein is associated with development of renal failure and cardiovascular death within 20 years in type 1 but not in type 2 diabetic patients. Scand J Urol Nephrol 42:168–174PubMed Sejdiu I, Torffvit O (2008) Decreased urinary concentration of Tamm-Horsfall protein is associated with development of renal failure and cardiovascular death within 20 years in type 1 but not in type 2 diabetic patients. Scand J Urol Nephrol 42:168–174PubMed
69.
go back to reference Chakraborty J, Below AA, Solaiman D (2004) Tamm-Horsfall protein in patients with kidney damage and diabetes. Urol Res 32:79–83PubMed Chakraborty J, Below AA, Solaiman D (2004) Tamm-Horsfall protein in patients with kidney damage and diabetes. Urol Res 32:79–83PubMed
70.
go back to reference Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112PubMed Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112PubMed
71.
go back to reference Gudbjartsson DF, Holm H, Indridason OS, Thorleifsson G, Edvardsson V, Sulem P, de Vegt F, d’Ancona FC, den Heijer M, Wetzels JF, Franzson L, Rafnar T, Kristjansson K, Bjornsdottir US, Eyjolfsson GI, Kiemeney LA, Kong A, Palsson R, Thorsteinsdottir U, Stefansson K (2010) Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet 6:e1001039PubMedCentralPubMed Gudbjartsson DF, Holm H, Indridason OS, Thorleifsson G, Edvardsson V, Sulem P, de Vegt F, d’Ancona FC, den Heijer M, Wetzels JF, Franzson L, Rafnar T, Kristjansson K, Bjornsdottir US, Eyjolfsson GI, Kiemeney LA, Kong A, Palsson R, Thorsteinsdottir U, Stefansson K (2010) Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet 6:e1001039PubMedCentralPubMed
72.
go back to reference Kumar V, Pena de la Vega L, Farell G, Lieske JC (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792PubMed Kumar V, Pena de la Vega L, Farell G, Lieske JC (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792PubMed
73.
go back to reference Glauser A, Hochreiter W, Jaeger P, Hess B (2000) Determinants of urinary excretion of Tamm-Horsfall protein in non-selected kidney stone formers and healthy subjects. Nephrol Dial Transplant 15:1580–1587PubMed Glauser A, Hochreiter W, Jaeger P, Hess B (2000) Determinants of urinary excretion of Tamm-Horsfall protein in non-selected kidney stone formers and healthy subjects. Nephrol Dial Transplant 15:1580–1587PubMed
74.
go back to reference Romero MC, Nocera S, Nesse AB (1997) Decreased Tamm-Horsfall protein in lithiasic patients. Clin Biochem 30:63–67PubMed Romero MC, Nocera S, Nesse AB (1997) Decreased Tamm-Horsfall protein in lithiasic patients. Clin Biochem 30:63–67PubMed
75.
go back to reference Jaggi M, Nakagawa Y, Zipperle L, Hess B (2007) Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35:55–62PubMed Jaggi M, Nakagawa Y, Zipperle L, Hess B (2007) Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35:55–62PubMed
76.
go back to reference Pourmand G, Nasseh H, Sarrafnejad A, Mehrsai A, Hamidi Alamdari D, Nourijelyani K, Shekarpour L (2005) Urinary Tamm-Horsfall protein and citrate: a case–control study of inhibitors and promoters of calcium stone formation. Urol J 2:79–85PubMed Pourmand G, Nasseh H, Sarrafnejad A, Mehrsai A, Hamidi Alamdari D, Nourijelyani K, Shekarpour L (2005) Urinary Tamm-Horsfall protein and citrate: a case–control study of inhibitors and promoters of calcium stone formation. Urol J 2:79–85PubMed
77.
go back to reference Youhanna S, Weber J, Beaujean V, Glaudemans B, Sobek J, Devuyst O (2013) Determination of uromodulin in human urine: influence of storage and processing. Nephrol Dial Transplant 29:136–145PubMed Youhanna S, Weber J, Beaujean V, Glaudemans B, Sobek J, Devuyst O (2013) Determination of uromodulin in human urine: influence of storage and processing. Nephrol Dial Transplant 29:136–145PubMed
78.
go back to reference Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol Res 39:269–282PubMedCentralPubMed Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol Res 39:269–282PubMedCentralPubMed
79.
go back to reference Knorle R, Schnierle P, Koch A, Buchholz NP, Hering F, Seiler H, Ackermann T, Rutishauser G (1994) Tamm-Horsfall glycoprotein: role in inhibition and promotion of renal calcium oxalate stone formation studied with Fourier-transform infrared spectroscopy. Clin Chem 40:1739–1743PubMed Knorle R, Schnierle P, Koch A, Buchholz NP, Hering F, Seiler H, Ackermann T, Rutishauser G (1994) Tamm-Horsfall glycoprotein: role in inhibition and promotion of renal calcium oxalate stone formation studied with Fourier-transform infrared spectroscopy. Clin Chem 40:1739–1743PubMed
80.
go back to reference Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26:179–184PubMed Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26:179–184PubMed
81.
go back to reference Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J (2002) Osteopontin—a molecule for all seasons. QJM 95:3–13PubMed Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J (2002) Osteopontin—a molecule for all seasons. QJM 95:3–13PubMed
82.
go back to reference Rittling SR, Denhardt DT (1999) Osteopontin function in pathology: lessons from osteopontin-deficient mice. Exp Nephrol 7:103–113PubMed Rittling SR, Denhardt DT (1999) Osteopontin function in pathology: lessons from osteopontin-deficient mice. Exp Nephrol 7:103–113PubMed
83.
go back to reference Giachelli CM, Steitz S (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19:615–622PubMed Giachelli CM, Steitz S (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19:615–622PubMed
84.
go back to reference Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F (2001) Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int 60:1645–1657PubMed Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F (2001) Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int 60:1645–1657PubMed
85.
go back to reference Vattikuti R, Towler DA (2004) Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 286:E686–E696PubMed Vattikuti R, Towler DA (2004) Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 286:E686–E696PubMed
86.
go back to reference Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47 Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47
87.
go back to reference De Yoreo JJ, Qiu SR, Hoyer JR (2006) Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol 291:F1123–F1131PubMed De Yoreo JJ, Qiu SR, Hoyer JR (2006) Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol 291:F1123–F1131PubMed
88.
go back to reference Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S, Fujii Y, Niimi K, Taguchi K (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637PubMed Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S, Fujii Y, Niimi K, Taguchi K (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637PubMed
89.
go back to reference Atmani F, Glenton PA, Khan SR (1998) Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects. Urol Res 26:201–207PubMed Atmani F, Glenton PA, Khan SR (1998) Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects. Urol Res 26:201–207PubMed
90.
go back to reference Atmani F, Khan SR (2002) Quantification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in vitro in the urine of healthy controls and stone-forming patients. Urol Int 68:54–59PubMed Atmani F, Khan SR (2002) Quantification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in vitro in the urine of healthy controls and stone-forming patients. Urol Int 68:54–59PubMed
91.
go back to reference McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929PubMed McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929PubMed
92.
go back to reference Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL (1998) Altered wound healing in mice lacking a functional osteopontin gene (spp1). J Clin Invest 101:1468–1478PubMedCentralPubMed Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL (1998) Altered wound healing in mice lacking a functional osteopontin gene (spp1). J Clin Invest 101:1468–1478PubMedCentralPubMed
93.
go back to reference Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147PubMed Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147PubMed
94.
go back to reference Chiocchetti A, Orilieri E, Cappellano G, Barizzone N, DA S, DA G, Lorini R, Ravazzolo R, Cadario F, Martinetti M, Calcaterra V, Cerutti F, Bruno G, Larizza D, Dianzani U (2010) The osteopontin gene +1239A/C single nucleotide polymorphism is associated with type 1 diabetes mellitus in the Italian population. Int J Immunopathol Pharmacol 23:263–269PubMed Chiocchetti A, Orilieri E, Cappellano G, Barizzone N, DA S, DA G, Lorini R, Ravazzolo R, Cadario F, Martinetti M, Calcaterra V, Cerutti F, Bruno G, Larizza D, Dianzani U (2010) The osteopontin gene +1239A/C single nucleotide polymorphism is associated with type 1 diabetes mellitus in the Italian population. Int J Immunopathol Pharmacol 23:263–269PubMed
95.
go back to reference Zhao F, Chen X, Meng T, Hao B, Zhang Z, Zhang G (2012) Genetic polymorphisms in the osteopontin promoter increases the risk of distance metastasis and death in Chinese patients with gastric cancer. BMC Cancer 12:477PubMedCentralPubMed Zhao F, Chen X, Meng T, Hao B, Zhang Z, Zhang G (2012) Genetic polymorphisms in the osteopontin promoter increases the risk of distance metastasis and death in Chinese patients with gastric cancer. BMC Cancer 12:477PubMedCentralPubMed
96.
go back to reference Marciano R, D’Annunzio G, Minuto N, Pasquali L, Santamaria A, Di Duca M, Ravazzolo R, Lorini R (2009) Association of alleles at polymorphic sites in the osteopontin encoding gene in young type 1 diabetic patients. Clin Immunol 131:84–91PubMed Marciano R, D’Annunzio G, Minuto N, Pasquali L, Santamaria A, Di Duca M, Ravazzolo R, Lorini R (2009) Association of alleles at polymorphic sites in the osteopontin encoding gene in young type 1 diabetic patients. Clin Immunol 131:84–91PubMed
97.
go back to reference Naito M, Matsui A, Inao M, Nagoshi S, Nagano M, Ito N, Egashira T, Hashimoto M, Mishiro S, Mochida S, Fujiwara K (2005) SNPs in the promoter region of the osteopontin gene as a marker predicting the efficacy of interferon-based therapies in patients with chronic hepatitis C. J Gastroenterol 40:381–388PubMed Naito M, Matsui A, Inao M, Nagoshi S, Nagano M, Ito N, Egashira T, Hashimoto M, Mishiro S, Mochida S, Fujiwara K (2005) SNPs in the promoter region of the osteopontin gene as a marker predicting the efficacy of interferon-based therapies in patients with chronic hepatitis C. J Gastroenterol 40:381–388PubMed
98.
go back to reference Safarinejad MR, Shafiei N, Safarinejad S (2013) Association between polymorphisms in osteopontin gene (SPP1) and first episode calcium oxalate urolithiasis. Urolithiasis 41:303–313PubMed Safarinejad MR, Shafiei N, Safarinejad S (2013) Association between polymorphisms in osteopontin gene (SPP1) and first episode calcium oxalate urolithiasis. Urolithiasis 41:303–313PubMed
99.
go back to reference Chutipongtanate S, Nakagawa Y, Sritippayawan S, Pittayamateekul J, Parichatikanond P, Westley BR, May FE, Malasit P, Thongboonkerd V (2005) Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor. J Clin Invest 115:3613–3622PubMedCentralPubMed Chutipongtanate S, Nakagawa Y, Sritippayawan S, Pittayamateekul J, Parichatikanond P, Westley BR, May FE, Malasit P, Thongboonkerd V (2005) Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor. J Clin Invest 115:3613–3622PubMedCentralPubMed
100.
go back to reference Tenenhouse HS (2005) Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter. Annu Rev Nutr 25:197–214PubMed Tenenhouse HS (2005) Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter. Annu Rev Nutr 25:197–214PubMed
101.
go back to reference Iwaki T, Sandoval-Cooper MJ, Tenenhouse HS, Castellino FJ (2008) A missense mutation in the sodium phosphate co-transporter Slc34a1 impairs phosphate homeostasis. J Am Soc Nephrol 19:1753–1762PubMedCentralPubMed Iwaki T, Sandoval-Cooper MJ, Tenenhouse HS, Castellino FJ (2008) A missense mutation in the sodium phosphate co-transporter Slc34a1 impairs phosphate homeostasis. J Am Soc Nephrol 19:1753–1762PubMedCentralPubMed
102.
go back to reference Prie D, Huart V, Bakouh N, Planelles G, Dellis O, Gerard B, Hulin P, Benque-Blanchet F, Silve C, Grandchamp B, Friedlander G (2002) Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 347:983–991PubMed Prie D, Huart V, Bakouh N, Planelles G, Dellis O, Gerard B, Hulin P, Benque-Blanchet F, Silve C, Grandchamp B, Friedlander G (2002) Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 347:983–991PubMed
103.
go back to reference Courbebaisse M, Leroy C, Bakouh N, Salaun C, Beck L, Grandchamp B, Planelles G, Hall RA, Friedlander G, Prie D (2012) A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism. PLOS One 7:e34764PubMedCentralPubMed Courbebaisse M, Leroy C, Bakouh N, Salaun C, Beck L, Grandchamp B, Planelles G, Hall RA, Friedlander G, Prie D (2012) A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism. PLOS One 7:e34764PubMedCentralPubMed
104.
go back to reference Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377PubMedCentralPubMed Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377PubMedCentralPubMed
105.
go back to reference Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186:1107–1113PubMedCentralPubMed Khan SR, Canales BK (2011) Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall’s plaques? J Urol 186:1107–1113PubMedCentralPubMed
106.
go back to reference Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109–F1115PubMedCentralPubMed Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109–F1115PubMedCentralPubMed
107.
go back to reference Khundmiri SJ, Ahmad A, Bennett RE, Weinman EJ, Steplock D, Cole J, Baumann PD, Lewis J, Singh S, Clark BJ, Lederer ED (2008) Novel regulatory function for NHERF-1 in Npt2a transcription. Am J Physiol Renal Physiol 294:F840–F849PubMed Khundmiri SJ, Ahmad A, Bennett RE, Weinman EJ, Steplock D, Cole J, Baumann PD, Lewis J, Singh S, Clark BJ, Lederer ED (2008) Novel regulatory function for NHERF-1 in Npt2a transcription. Am J Physiol Renal Physiol 294:F840–F849PubMed
108.
go back to reference Lederer ED, Khundmiri SJ, Weinman EJ (2003) Role of NHERF-1 in regulation of the activity of Na-K ATPase and sodium-phosphate co-transport in epithelial cells. J Am Soc Nephrol 14:1711–1719PubMed Lederer ED, Khundmiri SJ, Weinman EJ (2003) Role of NHERF-1 in regulation of the activity of Na-K ATPase and sodium-phosphate co-transport in epithelial cells. J Am Soc Nephrol 14:1711–1719PubMed
109.
go back to reference Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (2003) PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Kidney Int 64:1733–1745PubMed Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (2003) PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Kidney Int 64:1733–1745PubMed
110.
go back to reference Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ (2002) Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci USA 99:11470–11475PubMedCentralPubMed Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ (2002) Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci USA 99:11470–11475PubMedCentralPubMed
111.
go back to reference Weinman EJ, Mohanlal V, Stoycheff N, Wang F, Steplock D, Shenolikar S, Cunningham R (2006) Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am J Physiol Renal Physiol 290:F838–F843PubMed Weinman EJ, Mohanlal V, Stoycheff N, Wang F, Steplock D, Shenolikar S, Cunningham R (2006) Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am J Physiol Renal Physiol 290:F838–F843PubMed
112.
go back to reference Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725PubMed Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725PubMed
113.
go back to reference Wu XR (2009) Biology of urothelial tumorigenesis: insights from genetically engineered mice. Cancer Metastasis Rev 28:281–290PubMedCentralPubMed Wu XR (2009) Biology of urothelial tumorigenesis: insights from genetically engineered mice. Cancer Metastasis Rev 28:281–290PubMedCentralPubMed
114.
go back to reference He F, Mo L, Zheng XY, Hu C, Lepor H, Lee EY, Sun TT, Wu XR (2009) Deficiency of pRb family proteins and p53 in invasive urothelial tumorigenesis. Cancer Res 69:9413–9421PubMedCentralPubMed He F, Mo L, Zheng XY, Hu C, Lepor H, Lee EY, Sun TT, Wu XR (2009) Deficiency of pRb family proteins and p53 in invasive urothelial tumorigenesis. Cancer Res 69:9413–9421PubMedCentralPubMed
115.
go back to reference Watts RW (2005) Idiopathic urinary stone disease: possible polygenic aetiological factors. QJM 98:241–246PubMed Watts RW (2005) Idiopathic urinary stone disease: possible polygenic aetiological factors. QJM 98:241–246PubMed
116.
go back to reference Zerwekh JE, Reed-Gitomer BY, Pak CY (2002) Pathogenesis of hypercalciuric nephrolithiasis. Endocrinol Metab Clin North Am 31:869–884PubMed Zerwekh JE, Reed-Gitomer BY, Pak CY (2002) Pathogenesis of hypercalciuric nephrolithiasis. Endocrinol Metab Clin North Am 31:869–884PubMed
117.
go back to reference Goodman HO, Brommage R, Assimos DG, Holmes RP (1997) Genes in idiopathic calcium oxalate stone disease. World J Urol 15:186–194PubMed Goodman HO, Brommage R, Assimos DG, Holmes RP (1997) Genes in idiopathic calcium oxalate stone disease. World J Urol 15:186–194PubMed
Metadata
Title
Interstitial calcinosis in renal papillae of genetically engineered mouse models: relation to Randall’s plaques
Author
Xue-Ru Wu
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
Urolithiasis / Issue Special Issue 1/2015
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-014-0699-3

Other articles of this Special Issue 1/2015

Urolithiasis 1/2015 Go to the issue

Invited Review

Foreword