Skip to main content
Top
Published in: Neuroradiology 2/2016

01-02-2016 | Functional Neuroradiology

Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

Authors: Giuseppina Caiazzo, Francesca Trojsi, Mario Cirillo, Gioacchino Tedeschi, Fabrizio Esposito

Published in: Neuroradiology | Issue 2/2016

Login to get access

Abstract

Introduction

Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology.

Methods

Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm2, 54 gradient directions) and low angular resolution (b = 1000 s/mm2, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets.

Results

QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme.

Conclusion

Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time.
Literature
3.
go back to reference Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRef Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRef
4.
go back to reference Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648CrossRefPubMed Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648CrossRefPubMed
5.
go back to reference Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system a technical review. NMR BioMed 15:435–455CrossRefPubMed Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system a technical review. NMR BioMed 15:435–455CrossRefPubMed
6.
go back to reference Caiazzo G, Corbo D, Trojsi F et al (2014) Distributed corpus callosum involvement in amyotrophic lateral sclerosis: a deterministic tractography study using q-ball imaging. J Neurol 261:27–36CrossRefPubMed Caiazzo G, Corbo D, Trojsi F et al (2014) Distributed corpus callosum involvement in amyotrophic lateral sclerosis: a deterministic tractography study using q-ball imaging. J Neurol 261:27–36CrossRefPubMed
7.
go back to reference Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344CrossRefPubMed Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344CrossRefPubMed
9.
go back to reference Corbo D, Caiazzo G, Trojsi F et al (2013) Advantages of QBI in TBSS analyses. Magn Reson Imaging 32:184–189CrossRefPubMed Corbo D, Caiazzo G, Trojsi F et al (2013) Advantages of QBI in TBSS analyses. Magn Reson Imaging 32:184–189CrossRefPubMed
10.
go back to reference Mang SC, Gembris D, Grodd W, Klose U (2009) Comparison of gradient encoding directions for higher order tensor diffusion data. Magn Reson Med 61:335–343CrossRefPubMed Mang SC, Gembris D, Grodd W, Klose U (2009) Comparison of gradient encoding directions for higher order tensor diffusion data. Magn Reson Med 61:335–343CrossRefPubMed
11.
go back to reference Prčkovska V, Roebroeck AF, Pullens WLPM, Vilanova A, ter Haar Romeny BM (2008) Optimal acquisition schemes in high angular resolution diffusion weighted imaging. Med Image Comput Comput Assist Interv 11:9–17PubMed Prčkovska V, Roebroeck AF, Pullens WLPM, Vilanova A, ter Haar Romeny BM (2008) Optimal acquisition schemes in high angular resolution diffusion weighted imaging. Med Image Comput Comput Assist Interv 11:9–17PubMed
12.
go back to reference Prčkovska V, Achterberg HC, Bastiani M et al (2013) Optimal short-time acquisition schemes in high angular resolution diffusion-weighted imaging. Int J Biomed Imaging 2013:658583PubMedPubMedCentral Prčkovska V, Achterberg HC, Bastiani M et al (2013) Optimal short-time acquisition schemes in high angular resolution diffusion-weighted imaging. Int J Biomed Imaging 2013:658583PubMedPubMedCentral
13.
go back to reference Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26:1775–1786CrossRefPubMed Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26:1775–1786CrossRefPubMed
14.
go back to reference Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N (2010) Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn Reson Med 64:554–566PubMedPubMedCentral Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N (2010) Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn Reson Med 64:554–566PubMedPubMedCentral
15.
go back to reference Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMed Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMed
16.
go back to reference Hua K, Zhang J, Wakana S et al (2008) Tract probability maps in stereotaxic spaces: analysis of white matter anatomy and tract specific quantification. NeuroImage 39:336–347CrossRefPubMedPubMedCentral Hua K, Zhang J, Wakana S et al (2008) Tract probability maps in stereotaxic spaces: analysis of white matter anatomy and tract specific quantification. NeuroImage 39:336–347CrossRefPubMedPubMedCentral
17.
go back to reference Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous MD Sr (2012) A comprehensive reliability assessment of quantitative diffusion tensor tractography. NeuroImage 60:1127–1138CrossRefPubMedPubMedCentral Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous MD Sr (2012) A comprehensive reliability assessment of quantitative diffusion tensor tractography. NeuroImage 60:1127–1138CrossRefPubMedPubMedCentral
18.
go back to reference Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505CrossRefPubMed Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505CrossRefPubMed
19.
go back to reference Jeurissen B, Leemans A, Tournier J-D, Jones DK, Sijbers J (2013) Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp 34:2747–2766CrossRefPubMed Jeurissen B, Leemans A, Tournier J-D, Jones DK, Sijbers J (2013) Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp 34:2747–2766CrossRefPubMed
20.
go back to reference Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48:577–582CrossRefPubMed Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48:577–582CrossRefPubMed
21.
go back to reference Hopea T, Westlyed LT, Bjørneruda A (2012) The effect of gradient sampling schemes on diffusion metrics derived from probabilistic analysis and tract-based spatial statistics. Magn Reson Imaging 30(3):402–12CrossRef Hopea T, Westlyed LT, Bjørneruda A (2012) The effect of gradient sampling schemes on diffusion metrics derived from probabilistic analysis and tract-based spatial statistics. Magn Reson Imaging 30(3):402–12CrossRef
22.
go back to reference Xie S, Zuo N, Shang L, Song M, Fan L, Jiang T (2015) How does b-value affect HARDI reconstruction using clinical diffusion MRI data? PLoS One 10(3):e0120773CrossRefPubMedPubMedCentral Xie S, Zuo N, Shang L, Song M, Fan L, Jiang T (2015) How does b-value affect HARDI reconstruction using clinical diffusion MRI data? PLoS One 10(3):e0120773CrossRefPubMedPubMedCentral
23.
go back to reference Alexandera DC, Barkerb GJ (2005) Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. NeuroImage 27:357–367CrossRef Alexandera DC, Barkerb GJ (2005) Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. NeuroImage 27:357–367CrossRef
24.
go back to reference Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23:1176–1185CrossRefPubMed Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23:1176–1185CrossRefPubMed
Metadata
Title
Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity
Authors
Giuseppina Caiazzo
Francesca Trojsi
Mario Cirillo
Gioacchino Tedeschi
Fabrizio Esposito
Publication date
01-02-2016
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 2/2016
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-015-1616-3

Other articles of this Issue 2/2016

Neuroradiology 2/2016 Go to the issue