Skip to main content
Top
Published in: Neuroradiology 12/2015

Open Access 01-12-2015 | Invited Review

A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice

Authors: M. Grade, J. A. Hernandez Tamames, F. B. Pizzini, E. Achten, X. Golay, M. Smits

Published in: Neuroradiology | Issue 12/2015

Login to get access

Abstract

Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer’s disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood–brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies.
Literature
1.
go back to reference Wintermark M, Sesay M, Barbier E et al (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36(9):e83–e99PubMedCrossRef Wintermark M, Sesay M, Barbier E et al (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36(9):e83–e99PubMedCrossRef
2.
go back to reference Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89(1):212–216PubMedCentralPubMedCrossRef Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89(1):212–216PubMedCentralPubMedCrossRef
3.
go back to reference Sadowski EA, Bennett LK, Chan MR et al (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243(1):148–157PubMedCrossRef Sadowski EA, Bennett LK, Chan MR et al (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243(1):148–157PubMedCrossRef
4.
go back to reference Wang J, Licht DJ, Jahng G-H et al (2003) Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging 18(4):404–413PubMedCrossRef Wang J, Licht DJ, Jahng G-H et al (2003) Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging 18(4):404–413PubMedCrossRef
5.
6.
go back to reference Gevers S, Majoie CBLM, van den Tweel XW et al (2009) Acquisition time and reproducibility of continuous arterial spin-labeling perfusion imaging at 3T. AJNR Am J Neuroradiol 30(5):968–971PubMedCrossRef Gevers S, Majoie CBLM, van den Tweel XW et al (2009) Acquisition time and reproducibility of continuous arterial spin-labeling perfusion imaging at 3T. AJNR Am J Neuroradiol 30(5):968–971PubMedCrossRef
7.
go back to reference Jiang L, Kim M, Chodkowski B et al (2010) Reliability and reproducibility of perfusion MRI in cognitively normal subjects. Magn Reson Imaging 28(9):1283–1289PubMedCentralPubMedCrossRef Jiang L, Kim M, Chodkowski B et al (2010) Reliability and reproducibility of perfusion MRI in cognitively normal subjects. Magn Reson Imaging 28(9):1283–1289PubMedCentralPubMedCrossRef
8.
go back to reference Wang Y, Saykin AJ, Pfeuffer J et al (2011) Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage 54(2):1188–1195PubMedCrossRef Wang Y, Saykin AJ, Pfeuffer J et al (2011) Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage 54(2):1188–1195PubMedCrossRef
9.
go back to reference Mutsaerts HJMM, Steketee RME, Heijtel DFR et al (2014) Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 tesla. PLoS One 9(8), e104108PubMedCentralPubMedCrossRef Mutsaerts HJMM, Steketee RME, Heijtel DFR et al (2014) Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 tesla. PLoS One 9(8), e104108PubMedCentralPubMedCrossRef
10.
go back to reference Golay X, Hendrikse J, Lim TCC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15(1):10–27PubMedCrossRef Golay X, Hendrikse J, Lim TCC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15(1):10–27PubMedCrossRef
11.
go back to reference Petersen ET, Zimine I, Ho Y-CL, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79(944):688–701PubMedCrossRef Petersen ET, Zimine I, Ho Y-CL, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79(944):688–701PubMedCrossRef
12.
go back to reference Liu TT, Wong EC, Buxton RB (2009) Perfusion MRI. In: Squire E-IR (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 543–549CrossRef Liu TT, Wong EC, Buxton RB (2009) Perfusion MRI. In: Squire E-IR (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 543–549CrossRef
13.
go back to reference Golay X, Guenther M (2012) Arterial spin labelling: final steps to make it a clinical reality. MAGMA 25(2):79–82PubMedCrossRef Golay X, Guenther M (2012) Arterial spin labelling: final steps to make it a clinical reality. MAGMA 25(2):79–82PubMedCrossRef
15.
16.
go back to reference Alsop DC, Detre JA, Golay X et al (2014) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116PubMedCrossRefPubMedCentral Alsop DC, Detre JA, Golay X et al (2014) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116PubMedCrossRefPubMedCentral
17.
go back to reference Maccotta L, Detre JA, Alsop DC (1997) The efficiency of adiabatic inversion for perfusion imaging by arterial spin labeling. NMR Biomed 10(4–5):216–221PubMedCrossRef Maccotta L, Detre JA, Alsop DC (1997) The efficiency of adiabatic inversion for perfusion imaging by arterial spin labeling. NMR Biomed 10(4–5):216–221PubMedCrossRef
18.
go back to reference Utting JF, Thomas DL, Gadian DG, Ordidge RJ (2003) Velocity-driven adiabatic fast passage for arterial spin labeling: results from a computer model. Magn Reson Med 49(2):398–401PubMedCrossRef Utting JF, Thomas DL, Gadian DG, Ordidge RJ (2003) Velocity-driven adiabatic fast passage for arterial spin labeling: results from a computer model. Magn Reson Med 49(2):398–401PubMedCrossRef
19.
go back to reference Gach HM, Dai W (2004) Simple model of double adiabatic inversion (DAI) efficiency. Magn Reson Med 52(4):941–946PubMedCrossRef Gach HM, Dai W (2004) Simple model of double adiabatic inversion (DAI) efficiency. Magn Reson Med 52(4):941–946PubMedCrossRef
20.
go back to reference Trampel R, Jochimsen TH, Mildner T et al (2004) Efficiency of flow-driven adiabatic spin inversion under realistic experimental conditions: a computer simulation. Magn Reson Med 51(6):1187–1193PubMedCrossRef Trampel R, Jochimsen TH, Mildner T et al (2004) Efficiency of flow-driven adiabatic spin inversion under realistic experimental conditions: a computer simulation. Magn Reson Med 51(6):1187–1193PubMedCrossRef
21.
go back to reference Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40(3):383–396PubMedCrossRef Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40(3):383–396PubMedCrossRef
22.
23.
go back to reference Henkelman RM, Huang X, Xiang QS et al (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29(6):759–766PubMedCrossRef Henkelman RM, Huang X, Xiang QS et al (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29(6):759–766PubMedCrossRef
24.
go back to reference Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1):37–45PubMedCrossRef Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1):37–45PubMedCrossRef
25.
go back to reference Pizzini F, Smits M, Wesolowski R et al (2015) Arterial spin labeling. In: Saremi F (ed) Advances in noninvasive perfusion imaging: a multimodality diagnostic approach to tissue perfusion analysis. Lippincott Williams & Williams, Philadelphia Pizzini F, Smits M, Wesolowski R et al (2015) Arterial spin labeling. In: Saremi F (ed) Advances in noninvasive perfusion imaging: a multimodality diagnostic approach to tissue perfusion analysis. Lippincott Williams & Williams, Philadelphia
26.
go back to reference Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34(3):293–301PubMedCrossRef Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34(3):293–301PubMedCrossRef
27.
go back to reference Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10(4–5):237–249PubMedCrossRef Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10(4–5):237–249PubMedCrossRef
28.
go back to reference Edelman RR, Chen Q (1998) EPISTAR MRI: multislice mapping of cerebral blood flow. Magn Reson Med 40(6):800–805PubMedCrossRef Edelman RR, Chen Q (1998) EPISTAR MRI: multislice mapping of cerebral blood flow. Magn Reson Med 40(6):800–805PubMedCrossRef
29.
go back to reference Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54(2):366–372PubMedCrossRef Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54(2):366–372PubMedCrossRef
30.
go back to reference Oshio K, Feinberg DA (1991) GRASE (gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med 20(2):344–349PubMedCrossRef Oshio K, Feinberg DA (1991) GRASE (gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med 20(2):344–349PubMedCrossRef
31.
go back to reference Mulkern RV, Wong ST, Winalski C, Jolesz FA (1990) Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imaging 8(5):557–566PubMedCrossRef Mulkern RV, Wong ST, Winalski C, Jolesz FA (1990) Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imaging 8(5):557–566PubMedCrossRef
32.
go back to reference Vidorreta M, Wang Z, Rodríguez I et al (2013) Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Neuroimage 66:662–671PubMedCrossRef Vidorreta M, Wang Z, Rodríguez I et al (2013) Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Neuroimage 66:662–671PubMedCrossRef
33.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962PubMedCrossRef Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962PubMedCrossRef
34.
go back to reference Lu H, Nagae-Poetscher LM, Golay X et al (2005) Routine clinical brain MRI sequences for use at 3.0 tesla. J Magn Reson Imaging 22(1):13–22PubMedCrossRef Lu H, Nagae-Poetscher LM, Golay X et al (2005) Routine clinical brain MRI sequences for use at 3.0 tesla. J Magn Reson Imaging 22(1):13–22PubMedCrossRef
35.
go back to reference Wang J, Alsop DC, Li L et al (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 tesla. Magn Reson Med 48(2):242–254PubMedCrossRef Wang J, Alsop DC, Li L et al (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 tesla. Magn Reson Med 48(2):242–254PubMedCrossRef
36.
go back to reference Franke C, van Dorsten FA, Olah L et al (2000) Arterial spin tagging perfusion imaging of rat brain: dependency on magnetic field strength. Magn Reson Imaging 18(9):1109–1113PubMedCrossRef Franke C, van Dorsten FA, Olah L et al (2000) Arterial spin tagging perfusion imaging of rat brain: dependency on magnetic field strength. Magn Reson Imaging 18(9):1109–1113PubMedCrossRef
37.
go back to reference St Lawrence KS, Wang J (2005) Effects of the apparent transverse relaxation time on cerebral blood flow measurements obtained by arterial spin labeling. Magn Reson Med 53(2):425–433PubMedCrossRef St Lawrence KS, Wang J (2005) Effects of the apparent transverse relaxation time on cerebral blood flow measurements obtained by arterial spin labeling. Magn Reson Med 53(2):425–433PubMedCrossRef
38.
go back to reference Biagi L, Abbruzzese A, Bianchi MC et al (2007) Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25(4):696–702PubMedCrossRef Biagi L, Abbruzzese A, Bianchi MC et al (2007) Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25(4):696–702PubMedCrossRef
39.
go back to reference Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 29(7):1235–1241PubMedCentralPubMedCrossRef Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 29(7):1235–1241PubMedCentralPubMedCrossRef
40.
go back to reference Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol 29(8):1428–1435PubMedCentralPubMedCrossRef Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol 29(8):1428–1435PubMedCentralPubMedCrossRef
41.
go back to reference Detre JA, Alsop DC, Vives LR et al (1998) Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 50(3):633–641PubMedCrossRef Detre JA, Alsop DC, Vives LR et al (1998) Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 50(3):633–641PubMedCrossRef
42.
go back to reference Detre JA, Samuels OB, Alsop DC et al (1999) Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging 10(5):870–875PubMedCrossRef Detre JA, Samuels OB, Alsop DC et al (1999) Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging 10(5):870–875PubMedCrossRef
43.
go back to reference Kamano H, Yoshiura T, Hiwatashi A et al (2013) Arterial spin labeling in patients with chronic cerebral artery steno-occlusive disease: correlation with 15O-PET. Acta Radiol 54(1):99–106PubMedCrossRef Kamano H, Yoshiura T, Hiwatashi A et al (2013) Arterial spin labeling in patients with chronic cerebral artery steno-occlusive disease: correlation with 15O-PET. Acta Radiol 54(1):99–106PubMedCrossRef
44.
go back to reference Gevers S, Bokkers RP, Hendrikse J et al (2012) Robustness and reproducibility of flow territories defined by planning-free vessel-encoded pseudocontinuous arterial spin-labeling. AJNR Am J Neuroradiol 33(2):E21–E25PubMedCrossRef Gevers S, Bokkers RP, Hendrikse J et al (2012) Robustness and reproducibility of flow territories defined by planning-free vessel-encoded pseudocontinuous arterial spin-labeling. AJNR Am J Neuroradiol 33(2):E21–E25PubMedCrossRef
45.
go back to reference MacIntosh BJ, Lindsay AC, Kylintireas I et al (2010) Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol 31(10):1892–1894PubMedCrossRef MacIntosh BJ, Lindsay AC, Kylintireas I et al (2010) Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol 31(10):1892–1894PubMedCrossRef
46.
go back to reference Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51(4):736–743PubMedCrossRef Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51(4):736–743PubMedCrossRef
47.
go back to reference Brumm KP, Perthen JE, Liu TT et al (2010) An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. Neuroimage 51(3):995–1005PubMedCentralPubMedCrossRef Brumm KP, Perthen JE, Liu TT et al (2010) An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. Neuroimage 51(3):995–1005PubMedCentralPubMedCrossRef
48.
go back to reference Bokkers RPH, Bremmer JP, van Berckel BNM et al (2010) Arterial spin labeling perfusion MRI at multiple delay times: a correlative study with H(2)(15)O positron emission tomography in patients with symptomatic carotid artery occlusion. J Cereb Blood Flow Metab 30(1):222–229PubMedCentralPubMedCrossRef Bokkers RPH, Bremmer JP, van Berckel BNM et al (2010) Arterial spin labeling perfusion MRI at multiple delay times: a correlative study with H(2)(15)O positron emission tomography in patients with symptomatic carotid artery occlusion. J Cereb Blood Flow Metab 30(1):222–229PubMedCentralPubMedCrossRef
49.
go back to reference Macintosh BJ, Marquardt L, Schulz UG et al (2012) Hemodynamic alterations in vertebrobasilar large artery disease assessed by arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 33(10):1939–1944PubMedCrossRef Macintosh BJ, Marquardt L, Schulz UG et al (2012) Hemodynamic alterations in vertebrobasilar large artery disease assessed by arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 33(10):1939–1944PubMedCrossRef
50.
go back to reference Martin SZ, Madai VI, von Samson-Himmelstjerna FC et al (2015) 3D GRASE pulsed arterial spin labeling at multiple inflow times in patients with long arterial transit times: comparison with dynamic susceptibility-weighted contrast-enhanced MRI at 3 tesla. J Cereb Blood Flow Metab 35(3):392–401PubMedCrossRef Martin SZ, Madai VI, von Samson-Himmelstjerna FC et al (2015) 3D GRASE pulsed arterial spin labeling at multiple inflow times in patients with long arterial transit times: comparison with dynamic susceptibility-weighted contrast-enhanced MRI at 3 tesla. J Cereb Blood Flow Metab 35(3):392–401PubMedCrossRef
51.
go back to reference Hendrikse J, van Osch MJP, Rutgers DR et al (2004) Internal carotid artery occlusion assessed at pulsed arterial spin-labeling perfusion MR imaging at multiple delay times. Radiology 233(3):899–904PubMedCrossRef Hendrikse J, van Osch MJP, Rutgers DR et al (2004) Internal carotid artery occlusion assessed at pulsed arterial spin-labeling perfusion MR imaging at multiple delay times. Radiology 233(3):899–904PubMedCrossRef
52.
go back to reference Kimura H, Kado H, Koshimoto Y et al (2005) Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 22(2):189–198PubMedCrossRef Kimura H, Kado H, Koshimoto Y et al (2005) Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 22(2):189–198PubMedCrossRef
53.
go back to reference Bokkers RPH, van der Worp HB, Mali WPTM, Hendrikse J (2009) Noninvasive MR imaging of cerebral perfusion in patients with a carotid artery stenosis. Neurology 73(11):869–875PubMedCrossRef Bokkers RPH, van der Worp HB, Mali WPTM, Hendrikse J (2009) Noninvasive MR imaging of cerebral perfusion in patients with a carotid artery stenosis. Neurology 73(11):869–875PubMedCrossRef
54.
go back to reference Uchihashi Y, Hosoda K, Zimine I et al (2011) Clinical application of arterial spin-labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single-photon emission CT. AJNR Am J Neuroradiol 32(8):1545–1551PubMedCrossRef Uchihashi Y, Hosoda K, Zimine I et al (2011) Clinical application of arterial spin-labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single-photon emission CT. AJNR Am J Neuroradiol 32(8):1545–1551PubMedCrossRef
55.
go back to reference Yun TJ, Sohn C-H, Han MH et al (2013) Effect of carotid artery stenting on cerebral blood flow: evaluation of hemodynamic changes using arterial spin labeling. Neuroradiology 55(3):271–281PubMedCrossRef Yun TJ, Sohn C-H, Han MH et al (2013) Effect of carotid artery stenting on cerebral blood flow: evaluation of hemodynamic changes using arterial spin labeling. Neuroradiology 55(3):271–281PubMedCrossRef
56.
go back to reference Zaharchuk G, Do HM, Marks MP et al (2011) Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with moyamoya disease. Stroke 42(9):2485–2491PubMedCentralPubMedCrossRef Zaharchuk G, Do HM, Marks MP et al (2011) Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with moyamoya disease. Stroke 42(9):2485–2491PubMedCentralPubMedCrossRef
57.
go back to reference Donahue MJ, Ayad M, Moore R et al (2013) Relationships between hypercarbic reactivity, cerebral blood flow, and arterial circulation times in patients with moyamoya disease. J Magn Reson Imaging 38(5):1129–1139PubMedCrossRef Donahue MJ, Ayad M, Moore R et al (2013) Relationships between hypercarbic reactivity, cerebral blood flow, and arterial circulation times in patients with moyamoya disease. J Magn Reson Imaging 38(5):1129–1139PubMedCrossRef
58.
go back to reference Noguchi T, Kawashima M, Irie H et al (2011) Arterial spin-labeling MR imaging in moyamoya disease compared with SPECT imaging. Eur J Radiol 80(3):e557–e562PubMedCrossRef Noguchi T, Kawashima M, Irie H et al (2011) Arterial spin-labeling MR imaging in moyamoya disease compared with SPECT imaging. Eur J Radiol 80(3):e557–e562PubMedCrossRef
59.
go back to reference Goetti R, Warnock G, Kuhn FP et al (2014) Quantitative cerebral perfusion imaging in children and young adults with moyamoya disease: comparison of arterial spin-labeling-MRI and H2[15O]-PET. AJNR Am J Neuroradiol 35(5):1022–1028PubMedCrossRef Goetti R, Warnock G, Kuhn FP et al (2014) Quantitative cerebral perfusion imaging in children and young adults with moyamoya disease: comparison of arterial spin-labeling-MRI and H2[15O]-PET. AJNR Am J Neuroradiol 35(5):1022–1028PubMedCrossRef
60.
go back to reference Margariti P, Sanchez-Montanez A, Delgado I et al (2013) At-risk brain tissue identified with arterial spin labeling in neurotuberculosis. Pediatr Radiol 43(8):1049–1052PubMedCrossRef Margariti P, Sanchez-Montanez A, Delgado I et al (2013) At-risk brain tissue identified with arterial spin labeling in neurotuberculosis. Pediatr Radiol 43(8):1049–1052PubMedCrossRef
61.
go back to reference Ishitobi M, Yoneda M, Ikawa M et al (2013) Hashimoto’s encephalopathy with hippocampus involvement detected on continuous arterial spin labeling. Psychiatry Clin Neurosci 67(2):128–129PubMedCrossRef Ishitobi M, Yoneda M, Ikawa M et al (2013) Hashimoto’s encephalopathy with hippocampus involvement detected on continuous arterial spin labeling. Psychiatry Clin Neurosci 67(2):128–129PubMedCrossRef
62.
go back to reference Fiehler J, Illies T, Piening M et al (2009) Territorial and microvascular perfusion impairment in brain arteriovenous malformations. AJNR Am J Neuroradiol 30(2):356–361PubMedCrossRef Fiehler J, Illies T, Piening M et al (2009) Territorial and microvascular perfusion impairment in brain arteriovenous malformations. AJNR Am J Neuroradiol 30(2):356–361PubMedCrossRef
63.
go back to reference Suazo L, Foerster B, Fermin R et al (2012) Measurement of blood flow in arteriovenous malformations before and after embolization using arterial spin labeling. Interv Neuroradiol 18(1):42–48PubMedCentralPubMed Suazo L, Foerster B, Fermin R et al (2012) Measurement of blood flow in arteriovenous malformations before and after embolization using arterial spin labeling. Interv Neuroradiol 18(1):42–48PubMedCentralPubMed
64.
go back to reference Amponsah K, Ellis TL, Chan MD et al (2012) Retrospective analysis of imaging techniques for treatment planning and monitoring of obliteration for gamma knife treatment of cerebral arteriovenous malformation. Neurosurgery 71(4):893–899PubMedCrossRef Amponsah K, Ellis TL, Chan MD et al (2012) Retrospective analysis of imaging techniques for treatment planning and monitoring of obliteration for gamma knife treatment of cerebral arteriovenous malformation. Neurosurgery 71(4):893–899PubMedCrossRef
65.
go back to reference Shimizu K, Kosaka N, Yamamoto T, et al. (2014) Arterial spin labeling perfusion-weighted MRI for long-term follow-up of a cerebral arteriovenous malformation after stereotactic radiosurgery. Acta Radiol Short Rep 3(1) Shimizu K, Kosaka N, Yamamoto T, et al. (2014) Arterial spin labeling perfusion-weighted MRI for long-term follow-up of a cerebral arteriovenous malformation after stereotactic radiosurgery. Acta Radiol Short Rep 3(1)
66.
go back to reference Yu SL, Wang R, Wang S et al (2014) Accuracy of vessel-encoded pseudocontinuous arterial spin-labeling in identification of feeding arteries in patients with intracranial arteriovenous malformations. AJNR Am J Neuroradiol 35(1):65–71PubMedCentralPubMedCrossRef Yu SL, Wang R, Wang S et al (2014) Accuracy of vessel-encoded pseudocontinuous arterial spin-labeling in identification of feeding arteries in patients with intracranial arteriovenous malformations. AJNR Am J Neuroradiol 35(1):65–71PubMedCentralPubMedCrossRef
67.
go back to reference Aoyama K, Fushimi Y, Okada T et al (2012) Detection of symptomatic vasospasm after subarachnoid haemorrhage: initial findings from single time-point and serial measurements with arterial spin labelling. Eur Radiol 22(11):2382–2391PubMedCrossRef Aoyama K, Fushimi Y, Okada T et al (2012) Detection of symptomatic vasospasm after subarachnoid haemorrhage: initial findings from single time-point and serial measurements with arterial spin labelling. Eur Radiol 22(11):2382–2391PubMedCrossRef
68.
go back to reference Saida T, Masumoto T, Nakai Y et al (2012) Moyamoya disease: evaluation of postoperative revascularization using multiphase selective arterial spin labeling MRI. J Comput Assist Tomogr 36(1):143–149PubMedCrossRef Saida T, Masumoto T, Nakai Y et al (2012) Moyamoya disease: evaluation of postoperative revascularization using multiphase selective arterial spin labeling MRI. J Comput Assist Tomogr 36(1):143–149PubMedCrossRef
69.
go back to reference Zhao WG, Luo Q, Jia JB, Yu JL (2013) Cerebral hyperperfusion syndrome after revascularization surgery in patients with moyamoya disease. Br J Neurosurg 27(3):321–325PubMedCrossRef Zhao WG, Luo Q, Jia JB, Yu JL (2013) Cerebral hyperperfusion syndrome after revascularization surgery in patients with moyamoya disease. Br J Neurosurg 27(3):321–325PubMedCrossRef
70.
go back to reference Zheng G, Zhang LJ, Wang Z et al (2012) Changes in cerebral blood flow after transjugular intrahepatic portosystemic shunt can help predict the development of hepatic encephalopathy: an arterial spin labeling MR study. Eur J Radiol 81(12):3851–3856PubMedCrossRef Zheng G, Zhang LJ, Wang Z et al (2012) Changes in cerebral blood flow after transjugular intrahepatic portosystemic shunt can help predict the development of hepatic encephalopathy: an arterial spin labeling MR study. Eur J Radiol 81(12):3851–3856PubMedCrossRef
71.
go back to reference Liu AA, Voss HU, Dyke JP et al (2011) Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology 77(16):1518–1523PubMedCentralPubMedCrossRef Liu AA, Voss HU, Dyke JP et al (2011) Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology 77(16):1518–1523PubMedCentralPubMedCrossRef
72.
go back to reference Pollock JM, Whitlow CT, Deibler AR et al (2008) Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol 29(7):1302–1307PubMedCrossRef Pollock JM, Whitlow CT, Deibler AR et al (2008) Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol 29(7):1302–1307PubMedCrossRef
73.
go back to reference Wang Z, Xiao J, Xie S et al (2012) MR evaluation of cerebral oxygen metabolism and blood flow in stroke-like episodes of MELAS. J Neurol Sci 323(1–2):173–177PubMedCrossRef Wang Z, Xiao J, Xie S et al (2012) MR evaluation of cerebral oxygen metabolism and blood flow in stroke-like episodes of MELAS. J Neurol Sci 323(1–2):173–177PubMedCrossRef
74.
go back to reference Rothwell PM, Giles MF, Chandratheva A et al (2007) Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): a prospective population-based sequential comparison. Lancet 370(9596):1432–1442PubMedCrossRef Rothwell PM, Giles MF, Chandratheva A et al (2007) Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): a prospective population-based sequential comparison. Lancet 370(9596):1432–1442PubMedCrossRef
75.
76.
go back to reference Zaharchuk G, Olivot J-M, Fischbein NJ et al (2012) Arterial spin labeling imaging findings in transient ischemic attack patients: comparison with diffusion- and bolus perfusion-weighted imaging. Cerebrovasc Dis 34(3):221–228PubMedCrossRef Zaharchuk G, Olivot J-M, Fischbein NJ et al (2012) Arterial spin labeling imaging findings in transient ischemic attack patients: comparison with diffusion- and bolus perfusion-weighted imaging. Cerebrovasc Dis 34(3):221–228PubMedCrossRef
77.
go back to reference Qiao XJ, Salamon N, Wang DJJ et al (2013) Perfusion deficits detected by arterial spin-labeling in patients with TIA with negative diffusion and vascular imaging. AJNR Am J Neuroradiol 34(11):2125–2130PubMedCrossRef Qiao XJ, Salamon N, Wang DJJ et al (2013) Perfusion deficits detected by arterial spin-labeling in patients with TIA with negative diffusion and vascular imaging. AJNR Am J Neuroradiol 34(11):2125–2130PubMedCrossRef
78.
go back to reference Wang DJJ, Alger JR, Qiao JX et al (2012) The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 43(4):1018–1024PubMedCentralPubMedCrossRef Wang DJJ, Alger JR, Qiao JX et al (2012) The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 43(4):1018–1024PubMedCentralPubMedCrossRef
79.
go back to reference Nael K, Meshksar A, Liebeskind DS et al (2013) Periprocedural arterial spin labeling and dynamic susceptibility contrast perfusion in detection of cerebral blood flow in patients with acute ischemic syndrome. Stroke 44(3):664–670PubMedCentralPubMedCrossRef Nael K, Meshksar A, Liebeskind DS et al (2013) Periprocedural arterial spin labeling and dynamic susceptibility contrast perfusion in detection of cerebral blood flow in patients with acute ischemic syndrome. Stroke 44(3):664–670PubMedCentralPubMedCrossRef
80.
go back to reference Bokkers RPH, Hernandez DA, Merino JG et al (2012) Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 43(5):1290–1294PubMedCentralPubMedCrossRef Bokkers RPH, Hernandez DA, Merino JG et al (2012) Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 43(5):1290–1294PubMedCentralPubMedCrossRef
81.
go back to reference Zaharchuk G, El Mogy IS, Fischbein NJ, Albers GW (2012) Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke 43(7):1843–1848PubMedCentralPubMedCrossRef Zaharchuk G, El Mogy IS, Fischbein NJ, Albers GW (2012) Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke 43(7):1843–1848PubMedCentralPubMedCrossRef
82.
go back to reference Hendrikse J, Petersen ET, Chèze A et al (2009) Relation between cerebral perfusion territories and location of cerebral infarcts. Stroke 40(5):1617–1622PubMedCrossRef Hendrikse J, Petersen ET, Chèze A et al (2009) Relation between cerebral perfusion territories and location of cerebral infarcts. Stroke 40(5):1617–1622PubMedCrossRef
83.
go back to reference Chalela JA, Alsop DC, Gonzalez-Atavales JB et al (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31(3):680–687PubMedCrossRef Chalela JA, Alsop DC, Gonzalez-Atavales JB et al (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31(3):680–687PubMedCrossRef
84.
go back to reference Fernández-Seara MA, Edlow BL, Hoang A et al (2008) Minimizing acquisition time of arterial spin labeling at 3T. Magn Reson Med 59(6):1467–1471PubMedCrossRef Fernández-Seara MA, Edlow BL, Hoang A et al (2008) Minimizing acquisition time of arterial spin labeling at 3T. Magn Reson Med 59(6):1467–1471PubMedCrossRef
85.
go back to reference Chen T-Y, Chiu L, Wu T-C et al (2012) Arterial spin-labeling in routine clinical practice: a preliminary experience of 200 cases and correlation with MRI and clinical findings. Clin Imaging 36(4):345–352PubMedCrossRef Chen T-Y, Chiu L, Wu T-C et al (2012) Arterial spin-labeling in routine clinical practice: a preliminary experience of 200 cases and correlation with MRI and clinical findings. Clin Imaging 36(4):345–352PubMedCrossRef
86.
go back to reference Chen J, Licht DJ, Smith SE et al (2009) Arterial spin labeling perfusion MRI in pediatric arterial ischemic stroke: initial experiences. J Magn Reson Imaging 29(2):282–290PubMedCentralPubMedCrossRef Chen J, Licht DJ, Smith SE et al (2009) Arterial spin labeling perfusion MRI in pediatric arterial ischemic stroke: initial experiences. J Magn Reson Imaging 29(2):282–290PubMedCentralPubMedCrossRef
87.
go back to reference Wintermark P, Warfield SK (2012) New insights in perinatal arterial ischemic stroke by assessing brain perfusion. Trans Stroke Res 3(2):255–262CrossRef Wintermark P, Warfield SK (2012) New insights in perinatal arterial ischemic stroke by assessing brain perfusion. Trans Stroke Res 3(2):255–262CrossRef
88.
go back to reference Pienaar R, Paldino MJ, Madan N et al (2012) A quantitative method for correlating observations of decreased apparent diffusion coefficient with elevated cerebral blood perfusion in newborns presenting cerebral ischemic insults. Neuroimage 63(3):1510–1518PubMedCrossRef Pienaar R, Paldino MJ, Madan N et al (2012) A quantitative method for correlating observations of decreased apparent diffusion coefficient with elevated cerebral blood perfusion in newborns presenting cerebral ischemic insults. Neuroimage 63(3):1510–1518PubMedCrossRef
89.
go back to reference Njemanze PC, Beck OJ, Gomez CR et al (1991) North american symptomatic carotid endarterectomy trial. Methods, patient characteristics, and progress. Stroke 22(6):711–720CrossRef Njemanze PC, Beck OJ, Gomez CR et al (1991) North american symptomatic carotid endarterectomy trial. Methods, patient characteristics, and progress. Stroke 22(6):711–720CrossRef
90.
go back to reference European Carotid Surgery Trialists’ Collaborative Group (1998) Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 351(9113):1379–1387CrossRef European Carotid Surgery Trialists’ Collaborative Group (1998) Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 351(9113):1379–1387CrossRef
92.
go back to reference Bokkers RPH, Osch MJPV, Klijn CJM et al (2011) Cerebrovascular reactivity within perfusion territories in patients with an internal carotid artery occlusion. J Neurol, Neurosurg Psychiatry 82(9):1011–1016CrossRef Bokkers RPH, Osch MJPV, Klijn CJM et al (2011) Cerebrovascular reactivity within perfusion territories in patients with an internal carotid artery occlusion. J Neurol, Neurosurg Psychiatry 82(9):1011–1016CrossRef
93.
go back to reference Siero JCW, Hartkamp NS, Donahue MJ et al (2015) Neuronal activation induced BOLD and CBF responses upon acetazolamide administration in patients with steno-occlusive artery disease. Neuroimage 105:276–285PubMedCentralPubMedCrossRef Siero JCW, Hartkamp NS, Donahue MJ et al (2015) Neuronal activation induced BOLD and CBF responses upon acetazolamide administration in patients with steno-occlusive artery disease. Neuroimage 105:276–285PubMedCentralPubMedCrossRef
94.
go back to reference Van Laar PJ, Hendrikse J, Mali WPTM et al (2007) Altered flow territories after carotid stenting and carotid endarterectomy. J Vasc Surg 45(6):1155–1161PubMedCrossRef Van Laar PJ, Hendrikse J, Mali WPTM et al (2007) Altered flow territories after carotid stenting and carotid endarterectomy. J Vasc Surg 45(6):1155–1161PubMedCrossRef
95.
go back to reference Hesselink JR (2006) Differential diagnostic approach to MR imaging of white matter diseases. Top Magn Reson Imaging 17(4):243–263PubMedCrossRef Hesselink JR (2006) Differential diagnostic approach to MR imaging of white matter diseases. Top Magn Reson Imaging 17(4):243–263PubMedCrossRef
96.
go back to reference Zhang Q, Stafford RB, Wang Z et al (2012) Microvascular perfusion based on arterial spin labeled perfusion MRI as a measure of vascular risk in Alzheimer’s disease. J Alzheimers Dis 32(3):677–687PubMedCentralPubMed Zhang Q, Stafford RB, Wang Z et al (2012) Microvascular perfusion based on arterial spin labeled perfusion MRI as a measure of vascular risk in Alzheimer’s disease. J Alzheimers Dis 32(3):677–687PubMedCentralPubMed
97.
go back to reference Bastos-Leite AJ, Kuijer JPA, Rombouts SARB et al (2008) Cerebral blood flow by using pulsed arterial spin-labeling in elderly subjects with white matter hyperintensities. AJNR Am J Neuroradiol 29(7):1296–1301PubMedCrossRef Bastos-Leite AJ, Kuijer JPA, Rombouts SARB et al (2008) Cerebral blood flow by using pulsed arterial spin-labeling in elderly subjects with white matter hyperintensities. AJNR Am J Neuroradiol 29(7):1296–1301PubMedCrossRef
98.
go back to reference van Osch MJP, Teeuwisse WM, van Walderveen MAA et al (2009) Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 62(1):165–173PubMedCrossRef van Osch MJP, Teeuwisse WM, van Walderveen MAA et al (2009) Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 62(1):165–173PubMedCrossRef
99.
go back to reference Mutsaerts HJMM, Richard E, Heijtel DFR et al (2013) Gray matter contamination in arterial spin labeling white matter perfusion measurements in patients with dementia. Neuroimage Clin 4:139–144PubMedCentralPubMedCrossRef Mutsaerts HJMM, Richard E, Heijtel DFR et al (2013) Gray matter contamination in arterial spin labeling white matter perfusion measurements in patients with dementia. Neuroimage Clin 4:139–144PubMedCentralPubMedCrossRef
100.
go back to reference Wang DJJ, Alger JR, Qiao JX et al (2013) Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke—comparison with dynamic susceptibility contrast enhanced perfusion imaging. Neuroimage Clin 3:1–7PubMedCentralPubMedCrossRef Wang DJJ, Alger JR, Qiao JX et al (2013) Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke—comparison with dynamic susceptibility contrast enhanced perfusion imaging. Neuroimage Clin 3:1–7PubMedCentralPubMedCrossRef
101.
go back to reference Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16(6):1236–1249PubMedCrossRef Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16(6):1236–1249PubMedCrossRef
102.
go back to reference Yoo R-E, Yun TJ, Rhim JH et al (2015) Bright vessel appearance on arterial spin labeling MRI for localizing arterial occlusion in acute ischemic stroke. Stroke 46(2):564–567PubMedCrossRef Yoo R-E, Yun TJ, Rhim JH et al (2015) Bright vessel appearance on arterial spin labeling MRI for localizing arterial occlusion in acute ischemic stroke. Stroke 46(2):564–567PubMedCrossRef
103.
go back to reference Wang J, Alsop DC, Song HK et al (2003) Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 50(3):599–607PubMedCrossRef Wang J, Alsop DC, Song HK et al (2003) Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 50(3):599–607PubMedCrossRef
104.
go back to reference Zaharchuk G, Bammer R, Straka M et al (2009) Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology 252(3):797–807PubMedCrossRef Zaharchuk G, Bammer R, Straka M et al (2009) Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology 252(3):797–807PubMedCrossRef
105.
go back to reference Chng SM, Petersen ET, Zimine I et al (2008) Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke 39(12):3248–3254PubMedCrossRef Chng SM, Petersen ET, Zimine I et al (2008) Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke 39(12):3248–3254PubMedCrossRef
106.
go back to reference Huang Y-C, Liu H-L, Lee J-D et al (2013) Comparison of arterial spin labeling and dynamic susceptibility contrast perfusion MRI in patients with acute stroke. PLoS One 8(7), e69085PubMedCentralPubMedCrossRef Huang Y-C, Liu H-L, Lee J-D et al (2013) Comparison of arterial spin labeling and dynamic susceptibility contrast perfusion MRI in patients with acute stroke. PLoS One 8(7), e69085PubMedCentralPubMedCrossRef
107.
go back to reference Wolf RL, Wang J, Detre JA et al (2008) Arteriovenous shunt visualization in arteriovenous malformations with arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 29(4):681–687PubMedCrossRef Wolf RL, Wang J, Detre JA et al (2008) Arteriovenous shunt visualization in arteriovenous malformations with arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 29(4):681–687PubMedCrossRef
109.
go back to reference McMahon PM, Araki SS, Sandberg EA et al (2003) Cost-effectiveness of PET in the diagnosis of Alzheimer disease. Radiology 228(2):515–522PubMedCrossRef McMahon PM, Araki SS, Sandberg EA et al (2003) Cost-effectiveness of PET in the diagnosis of Alzheimer disease. Radiology 228(2):515–522PubMedCrossRef
110.
go back to reference Donahue MJ, Lu H, Jones CK et al (2006) An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR Biomed 19(8):1043–1054PubMedCrossRef Donahue MJ, Lu H, Jones CK et al (2006) An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR Biomed 19(8):1043–1054PubMedCrossRef
111.
go back to reference Xu G, Rowley HA, Wu G et al (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15o-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed 23(3):286–293PubMedCentralPubMed Xu G, Rowley HA, Wu G et al (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15o-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed 23(3):286–293PubMedCentralPubMed
112.
go back to reference Wolk DA, Detre JA (2012) Arterial spin labeling MRI: an emerging biomarker for Alzheimer’s disease and other neurodegenerative conditions. Curr Opin Neurol 25(4):421–428PubMedCentralPubMedCrossRef Wolk DA, Detre JA (2012) Arterial spin labeling MRI: an emerging biomarker for Alzheimer’s disease and other neurodegenerative conditions. Curr Opin Neurol 25(4):421–428PubMedCentralPubMedCrossRef
113.
go back to reference Chen Y, Wolk DA, Reddin JS et al (2011) Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 77(22):1977–1985PubMedCentralPubMedCrossRef Chen Y, Wolk DA, Reddin JS et al (2011) Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 77(22):1977–1985PubMedCentralPubMedCrossRef
114.
go back to reference Musiek ES, Chen Y, Korczykowski M et al (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement 8(1):51–59PubMedCentralPubMedCrossRef Musiek ES, Chen Y, Korczykowski M et al (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement 8(1):51–59PubMedCentralPubMedCrossRef
115.
go back to reference Austin BP, Nair VA, Meier TB et al (2011) Effects of hypoperfusion in Alzheimer’s disease. J Alzheimers Dis 26(Suppl 3):123–133PubMedCentralPubMed Austin BP, Nair VA, Meier TB et al (2011) Effects of hypoperfusion in Alzheimer’s disease. J Alzheimers Dis 26(Suppl 3):123–133PubMedCentralPubMed
116.
go back to reference Alexopoulos P, Sorg C, Förschler A et al (2012) Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. Eur Arch Psychiatry Clin Neurosci 262(1):69–77PubMedCrossRef Alexopoulos P, Sorg C, Förschler A et al (2012) Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. Eur Arch Psychiatry Clin Neurosci 262(1):69–77PubMedCrossRef
117.
go back to reference Yoshiura T, Hiwatashi A, Noguchi T et al (2009) Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol 19(12):2819–2825PubMedCrossRef Yoshiura T, Hiwatashi A, Noguchi T et al (2009) Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol 19(12):2819–2825PubMedCrossRef
118.
go back to reference Mak HKF, Chan Q, Zhang Z et al (2012) Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer’s disease and cognitively normal elderly adults at 3-tesla. J Alzheimers Dis 31(1):33–44PubMed Mak HKF, Chan Q, Zhang Z et al (2012) Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer’s disease and cognitively normal elderly adults at 3-tesla. J Alzheimers Dis 31(1):33–44PubMed
120.
go back to reference Du AT, Jahng GH, Hayasaka S et al (2006) Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67(7):1215–1220PubMedCentralPubMedCrossRef Du AT, Jahng GH, Hayasaka S et al (2006) Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67(7):1215–1220PubMedCentralPubMedCrossRef
121.
go back to reference Steketee RME, Bron EE, Meijboom R, et al. (2015) Early-stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol Steketee RME, Bron EE, Meijboom R, et al. (2015) Early-stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol
122.
go back to reference Chao LL, Buckley ST, Kornak J et al (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24(1):19–27PubMedCentralPubMedCrossRef Chao LL, Buckley ST, Kornak J et al (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24(1):19–27PubMedCentralPubMedCrossRef
123.
go back to reference Kim SM, Kim MJ, Rhee HY et al (2013) Regional cerebral perfusion in patients with Alzheimer’s disease and mild cognitive impairment: effect of APOE epsilon4 allele. Neuroradiology 55(1):25–34PubMedCrossRef Kim SM, Kim MJ, Rhee HY et al (2013) Regional cerebral perfusion in patients with Alzheimer’s disease and mild cognitive impairment: effect of APOE epsilon4 allele. Neuroradiology 55(1):25–34PubMedCrossRef
124.
go back to reference Dashjamts T, Yoshiura T, Hiwatashi A et al (2011) Simultaneous arterial spin labeling cerebral blood flow and morphological assessments for detection of Alzheimer’s disease. Acad Radiol 18(12):1492–1499PubMedCrossRef Dashjamts T, Yoshiura T, Hiwatashi A et al (2011) Simultaneous arterial spin labeling cerebral blood flow and morphological assessments for detection of Alzheimer’s disease. Acad Radiol 18(12):1492–1499PubMedCrossRef
125.
go back to reference Bron EE, Steketee RME, Houston GC et al (2014) Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia. Hum Brain Mapp 35(9):4916–4931PubMedCrossRef Bron EE, Steketee RME, Houston GC et al (2014) Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia. Hum Brain Mapp 35(9):4916–4931PubMedCrossRef
126.
go back to reference Zou J-X, Wang M-J, Lei X-J, Chen X-G (2014) 3.0T MRI arterial spin labeling and magnetic resonance spectroscopy technology in the application of Alzheimer’s disease. Exp Gerontol 60:31–36PubMedCrossRef Zou J-X, Wang M-J, Lei X-J, Chen X-G (2014) 3.0T MRI arterial spin labeling and magnetic resonance spectroscopy technology in the application of Alzheimer’s disease. Exp Gerontol 60:31–36PubMedCrossRef
127.
go back to reference Wang Z (2014) Characterizing early Alzheimer’s disease and disease progression using hippocampal volume and arterial spin labeling perfusion MRI. J Alzheimers Dis 42(Suppl 4):S495–S502PubMed Wang Z (2014) Characterizing early Alzheimer’s disease and disease progression using hippocampal volume and arterial spin labeling perfusion MRI. J Alzheimers Dis 42(Suppl 4):S495–S502PubMed
128.
go back to reference Schuff N, Matsumoto S, Kmiecik J et al (2009) Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement 5(6):454–462PubMedCentralPubMedCrossRef Schuff N, Matsumoto S, Kmiecik J et al (2009) Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement 5(6):454–462PubMedCentralPubMedCrossRef
129.
go back to reference Yoshiura T, Hiwatashi A, Yamashita K et al (2009) Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral blood flow using arterial spin-labeling in patients with Alzheimer disease. AJNR Am J Neuroradiol 30(7):1388–1393PubMedCrossRef Yoshiura T, Hiwatashi A, Yamashita K et al (2009) Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral blood flow using arterial spin-labeling in patients with Alzheimer disease. AJNR Am J Neuroradiol 30(7):1388–1393PubMedCrossRef
130.
go back to reference Mazza M, Marano G, Traversi G et al (2011) Primary cerebral blood flow deficiency and Alzheimer’s disease: shadows and lights. J Alzheimers Dis 23(3):375–389PubMed Mazza M, Marano G, Traversi G et al (2011) Primary cerebral blood flow deficiency and Alzheimer’s disease: shadows and lights. J Alzheimers Dis 23(3):375–389PubMed
131.
go back to reference Raji CA, Lee C, Lopez OL et al (2010) Initial experience in using continuous arterial spin-labeled MR imaging for early detection of Alzheimer disease. AJNR Am J Neuroradiol 31(5):847–855PubMedCentralPubMedCrossRef Raji CA, Lee C, Lopez OL et al (2010) Initial experience in using continuous arterial spin-labeled MR imaging for early detection of Alzheimer disease. AJNR Am J Neuroradiol 31(5):847–855PubMedCentralPubMedCrossRef
132.
go back to reference Wierenga CE, Hays CC, Zlatar ZZ (2014) Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J Alzheimers Dis 42(Suppl 4):S411–S419PubMed Wierenga CE, Hays CC, Zlatar ZZ (2014) Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J Alzheimers Dis 42(Suppl 4):S411–S419PubMed
133.
go back to reference Wang Z, Das SR, Xie SX et al (2013) Arterial spin labeled MRI in prodromal Alzheimer’s disease: a multi-site study. NeuroImage: Clin 2:630–636CrossRef Wang Z, Das SR, Xie SX et al (2013) Arterial spin labeled MRI in prodromal Alzheimer’s disease: a multi-site study. NeuroImage: Clin 2:630–636CrossRef
134.
go back to reference Alsop DC, Detre JA, Grossman M (2000) Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 47(1):93–100PubMedCrossRef Alsop DC, Detre JA, Grossman M (2000) Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 47(1):93–100PubMedCrossRef
135.
go back to reference Johnson NA, Jahng G-H, Weiner MW et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234(3):851–859PubMedCentralPubMedCrossRef Johnson NA, Jahng G-H, Weiner MW et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234(3):851–859PubMedCentralPubMedCrossRef
137.
go back to reference Asllani I, Habeck C, Scarmeas N et al (2008) Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J Cereb Blood Flow Metab 28(4):725–736PubMedCentralPubMedCrossRef Asllani I, Habeck C, Scarmeas N et al (2008) Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J Cereb Blood Flow Metab 28(4):725–736PubMedCentralPubMedCrossRef
138.
go back to reference Ances BM, Liang CL, Leontiev O et al (2009) Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum Brain Mapp 30(4):1120–1132PubMedCentralPubMedCrossRef Ances BM, Liang CL, Leontiev O et al (2009) Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum Brain Mapp 30(4):1120–1132PubMedCentralPubMedCrossRef
139.
go back to reference Dai W, Lopez OL, Carmichael OT et al (2009) Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250(3):856–866PubMedCentralPubMedCrossRef Dai W, Lopez OL, Carmichael OT et al (2009) Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250(3):856–866PubMedCentralPubMedCrossRef
140.
go back to reference Binnewijzend MAA, Kuijer JPA, Benedictus MR et al (2013) Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267(1):221–230PubMedCrossRef Binnewijzend MAA, Kuijer JPA, Benedictus MR et al (2013) Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267(1):221–230PubMedCrossRef
141.
go back to reference Pfefferbaum A, Chanraud S, Pitel A-L et al (2010) Volumetric cerebral perfusion imaging in healthy adults: regional distribution, laterality, and repeatability of pulsed continuous arterial spin labeling (PCASL). Psychiatry Res 182(3):266–273PubMedCentralPubMedCrossRef Pfefferbaum A, Chanraud S, Pitel A-L et al (2010) Volumetric cerebral perfusion imaging in healthy adults: regional distribution, laterality, and repeatability of pulsed continuous arterial spin labeling (PCASL). Psychiatry Res 182(3):266–273PubMedCentralPubMedCrossRef
142.
go back to reference Lüdemann L, Warmuth C, Plotkin M et al (2009) Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. Eur J Radiol 70(3):465–474PubMedCrossRef Lüdemann L, Warmuth C, Plotkin M et al (2009) Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. Eur J Radiol 70(3):465–474PubMedCrossRef
143.
go back to reference Lehmann P, Monet P, de Marco G et al (2010) A comparative study of perfusion measurement in brain tumours at 3 tesla MR: arterial spin labeling versus dynamic susceptibility contrast-enhanced MRI. Eur Neurol 64(1):21–26PubMedCrossRef Lehmann P, Monet P, de Marco G et al (2010) A comparative study of perfusion measurement in brain tumours at 3 tesla MR: arterial spin labeling versus dynamic susceptibility contrast-enhanced MRI. Eur Neurol 64(1):21–26PubMedCrossRef
144.
go back to reference Järnum H, Steffensen EG, Knutsson L et al (2010) Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 52(4):307–317PubMedCentralPubMedCrossRef Järnum H, Steffensen EG, Knutsson L et al (2010) Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 52(4):307–317PubMedCentralPubMedCrossRef
145.
go back to reference Hirai T, Kitajima M, Nakamura H et al (2011) Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study. AJNR Am J Neuroradiol 32(11):2073–2079PubMedCrossRef Hirai T, Kitajima M, Nakamura H et al (2011) Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study. AJNR Am J Neuroradiol 32(11):2073–2079PubMedCrossRef
146.
go back to reference van Westen D, Petersen ET, Wirestam R et al (2011) Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours. MAGMA 24(4):211–223PubMedCrossRef van Westen D, Petersen ET, Wirestam R et al (2011) Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours. MAGMA 24(4):211–223PubMedCrossRef
147.
go back to reference Yamashita K, Yoshiura T, Hiwatashi A et al (2013) Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and (18)f-fluorodeoxyglucose positron emission tomography. Neuroradiology 55(2):135–143PubMedCrossRef Yamashita K, Yoshiura T, Hiwatashi A et al (2013) Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and (18)f-fluorodeoxyglucose positron emission tomography. Neuroradiology 55(2):135–143PubMedCrossRef
148.
go back to reference Noguchi T, Yoshiura T, Hiwatashi A et al (2008) Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol 29(4):688–693PubMedCrossRef Noguchi T, Yoshiura T, Hiwatashi A et al (2008) Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol 29(4):688–693PubMedCrossRef
149.
go back to reference Yamashita K, Yoshiura T, Hiwatashi A et al (2012) Arterial spin labeling of hemangioblastoma: differentiation from metastatic brain tumors based on quantitative blood flow measurement. Neuroradiology 54(8):809–813PubMedCrossRef Yamashita K, Yoshiura T, Hiwatashi A et al (2012) Arterial spin labeling of hemangioblastoma: differentiation from metastatic brain tumors based on quantitative blood flow measurement. Neuroradiology 54(8):809–813PubMedCrossRef
150.
go back to reference Nabavizadeh SA, Assadsangabi R, Hajmomenian M et al (2015) High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma. Neuroradiology 57(5):527–533PubMedCrossRef Nabavizadeh SA, Assadsangabi R, Hajmomenian M et al (2015) High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma. Neuroradiology 57(5):527–533PubMedCrossRef
151.
go back to reference Wolf RL, Wang J, Wang S et al (2005) Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 tesla. J Magn Reson Imaging 22(4):475–482PubMedCrossRef Wolf RL, Wang J, Wang S et al (2005) Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 tesla. J Magn Reson Imaging 22(4):475–482PubMedCrossRef
152.
go back to reference Chawla S, Wang S, Wolf RL et al (2007) Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol 28(9):1683–1689PubMedCrossRef Chawla S, Wang S, Wolf RL et al (2007) Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol 28(9):1683–1689PubMedCrossRef
153.
go back to reference Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228(2):523–532PubMedCrossRef Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228(2):523–532PubMedCrossRef
154.
go back to reference Weber MA, Zoubaa S, Schlieter M et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66(12):1899–1906PubMedCrossRef Weber MA, Zoubaa S, Schlieter M et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66(12):1899–1906PubMedCrossRef
155.
go back to reference Kim HS, Kim SY (2007) A prospective study on the added value of pulsed arterial spin-labeling and apparent diffusion coefficients in the grading of gliomas. AJNR Am J Neuroradiol 28(9):1693–1699PubMedCrossRef Kim HS, Kim SY (2007) A prospective study on the added value of pulsed arterial spin-labeling and apparent diffusion coefficients in the grading of gliomas. AJNR Am J Neuroradiol 28(9):1693–1699PubMedCrossRef
156.
go back to reference Furtner J, Schöpf V, Schewzow K, et al. (2013) Arterial spin-labeling assessment of normalized vascular intratumoral signal intensity as a predictor of histologic grade of astrocytic neoplasms. AJNR Am J Neuroradiol Furtner J, Schöpf V, Schewzow K, et al. (2013) Arterial spin-labeling assessment of normalized vascular intratumoral signal intensity as a predictor of histologic grade of astrocytic neoplasms. AJNR Am J Neuroradiol
157.
go back to reference Cebeci H, Aydin O, Ozturk-Isik E et al (2014) Assessment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method. Eur J Radiol 83(10):1914–1919PubMedCrossRef Cebeci H, Aydin O, Ozturk-Isik E et al (2014) Assessment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method. Eur J Radiol 83(10):1914–1919PubMedCrossRef
158.
go back to reference Fellah S, Girard N, Chinot O et al (2011) Early evaluation of tumoral response to antiangiogenic therapy by arterial spin labeling perfusion magnetic resonance imaging and susceptibility weighted imaging in a patient with recurrent glioblastoma receiving bevacizumab. J Clin Oncol 29(11):e308–e311PubMedCrossRef Fellah S, Girard N, Chinot O et al (2011) Early evaluation of tumoral response to antiangiogenic therapy by arterial spin labeling perfusion magnetic resonance imaging and susceptibility weighted imaging in a patient with recurrent glioblastoma receiving bevacizumab. J Clin Oncol 29(11):e308–e311PubMedCrossRef
159.
go back to reference Ozsunar Y, Mullins ME, Kwong K et al (2010) Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol 17(3):282–290PubMedCrossRef Ozsunar Y, Mullins ME, Kwong K et al (2010) Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol 17(3):282–290PubMedCrossRef
160.
go back to reference Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 29(7):1228–1234PubMedCrossRefPubMedCentral Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 29(7):1228–1234PubMedCrossRefPubMedCentral
161.
go back to reference Clement P, Mutsaerts H-J, Ghariq E et al (2014) Review of confounding effects on perfusion measurements. Front Hum Neurosci 8 Clement P, Mutsaerts H-J, Ghariq E et al (2014) Review of confounding effects on perfusion measurements. Front Hum Neurosci 8
162.
go back to reference Takeuchi H, Taki Y, Hashizume H et al (2011) Cerebral blood flow during rest associates with general intelligence and creativity. PLoS One 6(9), e25532PubMedCentralPubMedCrossRef Takeuchi H, Taki Y, Hashizume H et al (2011) Cerebral blood flow during rest associates with general intelligence and creativity. PLoS One 6(9), e25532PubMedCentralPubMedCrossRef
163.
go back to reference O’Gorman RL, Kumari V, Williams SCR et al (2006) Personality factors correlate with regional cerebral perfusion. Neuroimage 31(2):489–495PubMedCrossRef O’Gorman RL, Kumari V, Williams SCR et al (2006) Personality factors correlate with regional cerebral perfusion. Neuroimage 31(2):489–495PubMedCrossRef
164.
go back to reference Ainslie PN, Cotter JD, George KP et al (2008) Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol 586(16):4005–4010PubMedCentralPubMedCrossRef Ainslie PN, Cotter JD, George KP et al (2008) Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol 586(16):4005–4010PubMedCentralPubMedCrossRef
165.
166.
go back to reference Paradiso S, Robinson RG, Boles Ponto LL et al (2003) Regional cerebral blood flow changes during visually induced subjective sadness in healthy elderly persons. J Neuropsychiatry Clin Neurosci 15(1):35–44PubMedCrossRef Paradiso S, Robinson RG, Boles Ponto LL et al (2003) Regional cerebral blood flow changes during visually induced subjective sadness in healthy elderly persons. J Neuropsychiatry Clin Neurosci 15(1):35–44PubMedCrossRef
167.
go back to reference Mardimae A, Balaban DY, Machina MA et al (2012) The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow. Pflugers Arch 464(4):345–351PubMedCrossRef Mardimae A, Balaban DY, Machina MA et al (2012) The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow. Pflugers Arch 464(4):345–351PubMedCrossRef
168.
go back to reference Page KA, Chan O, Arora J et al (2013) Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 309(1):63–70PubMedCentralPubMedCrossRef Page KA, Chan O, Arora J et al (2013) Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 309(1):63–70PubMedCentralPubMedCrossRef
169.
go back to reference Wang J, Rao H, Wetmore GS et al (2005) Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc Natl Acad Sci U S A 102(49):17804–17809PubMedCentralPubMedCrossRef Wang J, Rao H, Wetmore GS et al (2005) Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc Natl Acad Sci U S A 102(49):17804–17809PubMedCentralPubMedCrossRef
170.
go back to reference Addicott MA, Yang LL, Peiffer AM et al (2009) The effect of daily caffeine use on cerebral blood flow: how much caffeine can we tolerate? Hum Brain Mapp 30(10):3102–3114PubMedCentralPubMedCrossRef Addicott MA, Yang LL, Peiffer AM et al (2009) The effect of daily caffeine use on cerebral blood flow: how much caffeine can we tolerate? Hum Brain Mapp 30(10):3102–3114PubMedCentralPubMedCrossRef
171.
go back to reference Domino EF, Ni L, Xu Y et al (2004) Regional cerebral blood flow and plasma nicotine after smoking tobacco cigarettes. Prog Neuropsychopharmacol Biol Psychiatry 28(2):319–327PubMedCrossRef Domino EF, Ni L, Xu Y et al (2004) Regional cerebral blood flow and plasma nicotine after smoking tobacco cigarettes. Prog Neuropsychopharmacol Biol Psychiatry 28(2):319–327PubMedCrossRef
172.
go back to reference Jain V, Duda J, Avants B et al (2012) Longitudinal reproducibility and accuracy of pseudo-continuous arterial spin-labeled perfusion MR imaging in typically developing children. Radiology 263(2):527–536PubMedCentralPubMedCrossRef Jain V, Duda J, Avants B et al (2012) Longitudinal reproducibility and accuracy of pseudo-continuous arterial spin-labeled perfusion MR imaging in typically developing children. Radiology 263(2):527–536PubMedCentralPubMedCrossRef
173.
174.
go back to reference Gevers S, Nederveen AJ, Fijnvandraat K et al (2012) Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease. J Magn Reson Imaging 35(4):779–787PubMedCrossRef Gevers S, Nederveen AJ, Fijnvandraat K et al (2012) Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease. J Magn Reson Imaging 35(4):779–787PubMedCrossRef
175.
go back to reference Dahmoush HM, Vossough A, Roberts TPL (2012) Pediatric high-field magnetic resonance imaging. Neuroimaging Clin N Am 22(2):297–313, xi PubMedCrossRef Dahmoush HM, Vossough A, Roberts TPL (2012) Pediatric high-field magnetic resonance imaging. Neuroimaging Clin N Am 22(2):297–313, xi PubMedCrossRef
176.
go back to reference Herscovitch P, Raichle ME (1985) What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 5(1):65–69PubMedCrossRef Herscovitch P, Raichle ME (1985) What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 5(1):65–69PubMedCrossRef
177.
go back to reference Lu H, Clingman C, Golay X, van Zijl PCM (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla. Magn Reson Med 52(3):679–682PubMedCrossRef Lu H, Clingman C, Golay X, van Zijl PCM (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla. Magn Reson Med 52(3):679–682PubMedCrossRef
178.
go back to reference Lu H, Golay X, Pekar JJ, Van Zijl PCM (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50(2):263–274PubMedCrossRef Lu H, Golay X, Pekar JJ, Van Zijl PCM (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50(2):263–274PubMedCrossRef
179.
go back to reference Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60(6):1488–1497PubMedCentralPubMedCrossRef Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60(6):1488–1497PubMedCentralPubMedCrossRef
180.
go back to reference Wong EC, Buxton RB, Frank LR (1998) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 40(3):348–355PubMedCrossRef Wong EC, Buxton RB, Frank LR (1998) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 40(3):348–355PubMedCrossRef
181.
go back to reference Asllani I, Borogovac A, Brown TR (2008) Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 60(6):1362–1371PubMedCrossRef Asllani I, Borogovac A, Brown TR (2008) Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 60(6):1362–1371PubMedCrossRef
182.
go back to reference Melzer TR, Watts R, MacAskill MR et al (2011) Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 134(Pt 3):845–855PubMedCentralPubMedCrossRef Melzer TR, Watts R, MacAskill MR et al (2011) Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 134(Pt 3):845–855PubMedCentralPubMedCrossRef
183.
go back to reference Fernández-Seara MA, Mengual E, Vidorreta M et al (2012) Cortical hypoperfusion in Parkinson’s disease assessed using arterial spin labeled perfusion MRI. Neuroimage 59(3):2743–2750PubMedCrossRef Fernández-Seara MA, Mengual E, Vidorreta M et al (2012) Cortical hypoperfusion in Parkinson’s disease assessed using arterial spin labeled perfusion MRI. Neuroimage 59(3):2743–2750PubMedCrossRef
184.
go back to reference Wolf RC, Grön G, Sambataro F et al (2011) Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington’s disease. J Cereb Blood Flow Metab 31(9):1908–1918PubMedCentralPubMedCrossRef Wolf RC, Grön G, Sambataro F et al (2011) Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington’s disease. J Cereb Blood Flow Metab 31(9):1908–1918PubMedCentralPubMedCrossRef
185.
go back to reference Chen JJ, Salat DH, Rosas HD (2012) Complex relationships between cerebral blood flow and brain atrophy in early Huntington’s disease. Neuroimage 59(2):1043–1051PubMedCentralPubMedCrossRef Chen JJ, Salat DH, Rosas HD (2012) Complex relationships between cerebral blood flow and brain atrophy in early Huntington’s disease. Neuroimage 59(2):1043–1051PubMedCentralPubMedCrossRef
186.
go back to reference Ota M, Sato N, Nakata Y et al (2013) Abnormalities of cerebral blood flow in multiple sclerosis: a pseudocontinuous arterial spin labeling MRI study. Magn Reson Imaging 31(6):990–995PubMedCrossRef Ota M, Sato N, Nakata Y et al (2013) Abnormalities of cerebral blood flow in multiple sclerosis: a pseudocontinuous arterial spin labeling MRI study. Magn Reson Imaging 31(6):990–995PubMedCrossRef
187.
go back to reference Paling D, Thade Petersen E, Tozer DJ et al (2014) Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability. J Cereb Blood Flow Metab 34(1):34–42PubMedCentralPubMedCrossRef Paling D, Thade Petersen E, Tozer DJ et al (2014) Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability. J Cereb Blood Flow Metab 34(1):34–42PubMedCentralPubMedCrossRef
189.
go back to reference Golay X, Petersen ET (2006) Arterial spin labeling: benefits and pitfalls of high magnetic field. Neuroimaging Clin N Am 16(2):259–268, x PubMedCrossRef Golay X, Petersen ET (2006) Arterial spin labeling: benefits and pitfalls of high magnetic field. Neuroimaging Clin N Am 16(2):259–268, x PubMedCrossRef
190.
go back to reference van Gelderen P, de Zwart JA, Duyn JH (2008) Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 59(4):788–795PubMedCrossRef van Gelderen P, de Zwart JA, Duyn JH (2008) Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 59(4):788–795PubMedCrossRef
192.
go back to reference Petersen ET, Lim T, Golay X (2006) Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 55(2):219–232PubMedCrossRef Petersen ET, Lim T, Golay X (2006) Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 55(2):219–232PubMedCrossRef
193.
go back to reference Qiu D, Straka M, Zun Z et al (2012) CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging 36(1):110–119PubMedCentralPubMedCrossRef Qiu D, Straka M, Zun Z et al (2012) CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging 36(1):110–119PubMedCentralPubMedCrossRef
194.
195.
196.
198.
go back to reference Wolf RL, Alsop DC, Levy-Reis I et al (2001) Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 22(7):1334–1341PubMed Wolf RL, Alsop DC, Levy-Reis I et al (2001) Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 22(7):1334–1341PubMed
199.
go back to reference Liu HL, Kochunov P, Hou J et al (2001) Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with H(2)(15)O PET measurements. Magn Reson Med 45(3):431–435PubMedCrossRef Liu HL, Kochunov P, Hou J et al (2001) Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with H(2)(15)O PET measurements. Magn Reson Med 45(3):431–435PubMedCrossRef
200.
go back to reference Lim Y-M, Cho Y-W, Shamim S et al (2008) Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res 82(2–3):183–189PubMedCentralPubMedCrossRef Lim Y-M, Cho Y-W, Shamim S et al (2008) Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res 82(2–3):183–189PubMedCentralPubMedCrossRef
201.
go back to reference Pizzini F, Farace P, Zanoni T et al (2008) Pulsed-arterial-spin-labeling perfusion 3T MRI following single seizure: a first case report study. Epilepsy Res 81(2–3):225–227PubMedCrossRef Pizzini F, Farace P, Zanoni T et al (2008) Pulsed-arterial-spin-labeling perfusion 3T MRI following single seizure: a first case report study. Epilepsy Res 81(2–3):225–227PubMedCrossRef
202.
go back to reference Pollock JM, Deibler AR, West TG et al (2008) Arterial spin-labeled magnetic resonance imaging in hyperperfused seizure focus: a case report. J Comput Assist Tomogr 32(2):291–292PubMedCrossRef Pollock JM, Deibler AR, West TG et al (2008) Arterial spin-labeled magnetic resonance imaging in hyperperfused seizure focus: a case report. J Comput Assist Tomogr 32(2):291–292PubMedCrossRef
203.
go back to reference Pendse N, Wissmeyer M, Altrichter S et al (2010) Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J Neuroradiol 37(1):60–63PubMedCrossRef Pendse N, Wissmeyer M, Altrichter S et al (2010) Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J Neuroradiol 37(1):60–63PubMedCrossRef
204.
go back to reference Wissmeyer M, Altrichter S, Pereira VM et al (2010) Arterial spin-labeling MRI perfusion in tuberous sclerosis: correlation with PET. J Neuroradiol 37(2):127–130PubMedCrossRef Wissmeyer M, Altrichter S, Pereira VM et al (2010) Arterial spin-labeling MRI perfusion in tuberous sclerosis: correlation with PET. J Neuroradiol 37(2):127–130PubMedCrossRef
205.
go back to reference Storti SF, Boscolo Galazzo I, Del Felice A et al (2014) Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage 102(Pt 1):49–59PubMedCrossRef Storti SF, Boscolo Galazzo I, Del Felice A et al (2014) Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage 102(Pt 1):49–59PubMedCrossRef
206.
go back to reference Pizzini FB, Farace P, Manganotti P et al (2013) Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI. Magn Reson Imaging 31(6):1001–1005PubMedCrossRef Pizzini FB, Farace P, Manganotti P et al (2013) Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI. Magn Reson Imaging 31(6):1001–1005PubMedCrossRef
207.
go back to reference Toledo M, Munuera J, Salas-Puig X et al (2011) Localisation value of ictal arterial spin-labelled sequences in partial seizures. Epileptic Disord 13(3):336–339PubMed Toledo M, Munuera J, Salas-Puig X et al (2011) Localisation value of ictal arterial spin-labelled sequences in partial seizures. Epileptic Disord 13(3):336–339PubMed
208.
go back to reference Oishi M, Ishida G, Morii K et al (2012) Ictal focal hyperperfusion demonstrated by arterial spin-labeling perfusion MRI in partial epilepsy status. Neuroradiology 54(6):653–656PubMedCrossRef Oishi M, Ishida G, Morii K et al (2012) Ictal focal hyperperfusion demonstrated by arterial spin-labeling perfusion MRI in partial epilepsy status. Neuroradiology 54(6):653–656PubMedCrossRef
209.
go back to reference Kanazawa Y, Morioka T, Arakawa S et al (2015) Nonconvulsive partial status epilepticus mimicking recurrent infarction revealed by diffusion-weighted and arterial spin labeling perfusion magnetic resonance images. J Stroke Cerebrovasc Dis 24(4):731–738PubMedCrossRef Kanazawa Y, Morioka T, Arakawa S et al (2015) Nonconvulsive partial status epilepticus mimicking recurrent infarction revealed by diffusion-weighted and arterial spin labeling perfusion magnetic resonance images. J Stroke Cerebrovasc Dis 24(4):731–738PubMedCrossRef
211.
go back to reference Madan N, Grant PE (2009) New directions in clinical imaging of cortical dysplasias. Epilepsia 50(Suppl 9):9–18PubMedCrossRef Madan N, Grant PE (2009) New directions in clinical imaging of cortical dysplasias. Epilepsia 50(Suppl 9):9–18PubMedCrossRef
212.
go back to reference Théberge J (2008) Perfusion magnetic resonance imaging in psychiatry. Top Magn Reson Imaging 19(2):111–130PubMedCrossRef Théberge J (2008) Perfusion magnetic resonance imaging in psychiatry. Top Magn Reson Imaging 19(2):111–130PubMedCrossRef
213.
go back to reference Duhameau B, Ferré J-C, Jannin P et al (2010) Chronic and treatment-resistant depression: a study using arterial spin labeling perfusion MRI at 3 tesla. Psychiatry Res 182(2):111–116PubMedCrossRef Duhameau B, Ferré J-C, Jannin P et al (2010) Chronic and treatment-resistant depression: a study using arterial spin labeling perfusion MRI at 3 tesla. Psychiatry Res 182(2):111–116PubMedCrossRef
214.
go back to reference Ho TC, Wu J, Shin DD et al (2013) Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression. J Am Acad Child Adolesc Psychiatry 52(10):1076–1091.e2PubMedCrossRef Ho TC, Wu J, Shin DD et al (2013) Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression. J Am Acad Child Adolesc Psychiatry 52(10):1076–1091.e2PubMedCrossRef
215.
go back to reference Colloby SJ, Firbank MJ, He J et al (2012) Regional cerebral blood flow in late-life depression: arterial spin labelling magnetic resonance study. Br J Psychiatry 200(2):150–155PubMedCrossRef Colloby SJ, Firbank MJ, He J et al (2012) Regional cerebral blood flow in late-life depression: arterial spin labelling magnetic resonance study. Br J Psychiatry 200(2):150–155PubMedCrossRef
216.
go back to reference Scheef L, Manka C, Daamen M et al (2010) Resting-state perfusion in nonmedicated schizophrenic patients: a continuous arterial spin-labeling 3.0-T MR study. Radiology 256(1):253–260PubMedCrossRef Scheef L, Manka C, Daamen M et al (2010) Resting-state perfusion in nonmedicated schizophrenic patients: a continuous arterial spin-labeling 3.0-T MR study. Radiology 256(1):253–260PubMedCrossRef
217.
go back to reference Pinkham A, Loughead J, Ruparel K et al (2011) Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI. Psychiatry Res 194(1):64–72PubMedCentralPubMedCrossRef Pinkham A, Loughead J, Ruparel K et al (2011) Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI. Psychiatry Res 194(1):64–72PubMedCentralPubMedCrossRef
218.
go back to reference Kindler J, Jann K, Homan P et al (2015) Static and dynamic characteristics of cerebral blood flow during the resting state in schizophrenia. Schizophr Bull 41(1):163–170PubMedCrossRefPubMedCentral Kindler J, Jann K, Homan P et al (2015) Static and dynamic characteristics of cerebral blood flow during the resting state in schizophrenia. Schizophr Bull 41(1):163–170PubMedCrossRefPubMedCentral
219.
go back to reference Wolf RC, Thomann PA, Sambataro F et al (2012) Orbitofrontal cortex and impulsivity in borderline personality disorder: an MRI study of baseline brain perfusion. Eur Arch Psychiatry Clin Neurosci 262(8):677–685PubMedCrossRef Wolf RC, Thomann PA, Sambataro F et al (2012) Orbitofrontal cortex and impulsivity in borderline personality disorder: an MRI study of baseline brain perfusion. Eur Arch Psychiatry Clin Neurosci 262(8):677–685PubMedCrossRef
220.
go back to reference Weiduschat N, Dubin MJ (2013) Prefrontal cortical blood flow predicts response of depression to RTMS. J Affect Disord 150(2):699–702PubMedCrossRef Weiduschat N, Dubin MJ (2013) Prefrontal cortical blood flow predicts response of depression to RTMS. J Affect Disord 150(2):699–702PubMedCrossRef
221.
go back to reference Homan P, Kindler J, Hauf M et al (2012) Cerebral blood flow identifies responders to transcranial magnetic stimulation in auditory verbal hallucinations. Transl Psychiatry 2, e189PubMedCentralPubMedCrossRef Homan P, Kindler J, Hauf M et al (2012) Cerebral blood flow identifies responders to transcranial magnetic stimulation in auditory verbal hallucinations. Transl Psychiatry 2, e189PubMedCentralPubMedCrossRef
222.
go back to reference Handley R, Zelaya FO, Reinders AATS et al (2013) Acute effects of single-dose aripiprazole and haloperidol on resting cerebral blood flow (RCBF) in the human brain. Hum Brain Mapp 34(2):272–282PubMedCrossRef Handley R, Zelaya FO, Reinders AATS et al (2013) Acute effects of single-dose aripiprazole and haloperidol on resting cerebral blood flow (RCBF) in the human brain. Hum Brain Mapp 34(2):272–282PubMedCrossRef
223.
go back to reference Nordin LE, Li T-Q, Brogren J et al (2013) Cortical responses to amphetamine exposure studied by PCASL MRI and pharmacokinetic/pharmacodynamic dose modeling. Neuroimage 68:75–82PubMedCrossRef Nordin LE, Li T-Q, Brogren J et al (2013) Cortical responses to amphetamine exposure studied by PCASL MRI and pharmacokinetic/pharmacodynamic dose modeling. Neuroimage 68:75–82PubMedCrossRef
224.
go back to reference Khalili-Mahani N, Niesters M, van Osch MJ et al (2015) Ketamine interactions with biomarkers of stress: a randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. Neuroimage 108:396–409PubMedCrossRef Khalili-Mahani N, Niesters M, van Osch MJ et al (2015) Ketamine interactions with biomarkers of stress: a randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. Neuroimage 108:396–409PubMedCrossRef
225.
go back to reference Hendrikse J, van der Grond J, Lu H et al (2004) Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35(4):882–887PubMedCrossRef Hendrikse J, van der Grond J, Lu H et al (2004) Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35(4):882–887PubMedCrossRef
226.
go back to reference Hartkamp NS, Helle M, Chappell MA et al (2014) Validation of planning-free vessel-encoded pseudo-continuous arterial spin labeling MR imaging as territorial-ASL strategy by comparison to super-selective P-CASL MRI. Magn Reson Med 71(6):2059–2070PubMedCrossRef Hartkamp NS, Helle M, Chappell MA et al (2014) Validation of planning-free vessel-encoded pseudo-continuous arterial spin labeling MR imaging as territorial-ASL strategy by comparison to super-selective P-CASL MRI. Magn Reson Med 71(6):2059–2070PubMedCrossRef
227.
go back to reference Hartkamp NS, Petersen ET, De Vis JB et al (2013) Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. NMR Biomed 26(8):901–912PubMedCrossRef Hartkamp NS, Petersen ET, De Vis JB et al (2013) Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. NMR Biomed 26(8):901–912PubMedCrossRef
Metadata
Title
A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice
Authors
M. Grade
J. A. Hernandez Tamames
F. B. Pizzini
E. Achten
X. Golay
M. Smits
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 12/2015
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-015-1571-z

Other articles of this Issue 12/2015

Neuroradiology 12/2015 Go to the issue