Skip to main content
Top
Published in: Neuroradiology 8/2015

01-08-2015 | Head and Neck Radiology

Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?

Authors: An De Crop, Jan Casselman, Tom Van Hoof, Melissa Dierens, Elke Vereecke, Nicolas Bossu, Jaime Pamplona, Katharina D’Herde, Hubert Thierens, Klaus Bacher

Published in: Neuroradiology | Issue 8/2015

Login to get access

Abstract

Introduction

Metal artifacts may negatively affect radiologic assessment in the oral cavity. The aim of this study was to evaluate different metal artifact reduction techniques for metal artifacts induced by dental hardware in CT scans of the oral cavity.

Methods

Clinical image quality was assessed using a Thiel-embalmed cadaver. A Catphan phantom and a polymethylmethacrylate (PMMA) phantom were used to evaluate physical-technical image quality parameters such as artifact area, artifact index (AI), and contrast detail (IQFinv). Metal cylinders were inserted in each phantom to create metal artifacts. CT images of both phantoms and the Thiel-embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120, and 140 kVp; model-based iterative reconstruction (Veo); and synthesized monochromatic keV images with and without metal artifact reduction software (MARs). Four radiologists assessed the clinical image quality, using an image criteria score (ICS).

Results

Significant influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area (p < 0.05). However, MARs reconstructed images resulted in lower ICS.

Conclusion

Of all investigated techniques, Veo shows to be most promising, with a significant improvement of both the clinical and physical-technical image quality without adversely affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is not sufficient and may even adversely influence the image quality.
Literature
1.
go back to reference Geets X et al (2005) Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother Oncol 77(1):25–31CrossRefPubMed Geets X et al (2005) Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother Oncol 77(1):25–31CrossRefPubMed
2.
go back to reference Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24(6):1679–1691CrossRefPubMed Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24(6):1679–1691CrossRefPubMed
3.
go back to reference Lee MJ et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multidetector CT. Radiographics 27(3):791–803CrossRefPubMed Lee MJ et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multidetector CT. Radiographics 27(3):791–803CrossRefPubMed
4.
go back to reference Fiala TGS, Novelline RA, Yaremchuk MJ (1993) Comparison of Ct imaging artifacts from craniomaxillofacial internal-fixation devices. Plast Reconstr Surg 92(7):1227–1232PubMed Fiala TGS, Novelline RA, Yaremchuk MJ (1993) Comparison of Ct imaging artifacts from craniomaxillofacial internal-fixation devices. Plast Reconstr Surg 92(7):1227–1232PubMed
5.
go back to reference Haramati N et al (1994) Ct scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 18(6):429–434CrossRefPubMed Haramati N et al (1994) Ct scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 18(6):429–434CrossRefPubMed
6.
go back to reference Moon SG et al (2008) Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3-Dimensional quantitative assessment. J Comput Assist Tomogr 32(4):630–633CrossRefPubMed Moon SG et al (2008) Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3-Dimensional quantitative assessment. J Comput Assist Tomogr 32(4):630–633CrossRefPubMed
7.
go back to reference Lee IS et al (2007) A pragmatic protocol for reduction in the metal artifact and radiation dose in multislice computed tomography of the spine: cadaveric evaluation after cervical pedicle screw placement. J Comput Assist Tomogr 31(4):635–641CrossRefPubMed Lee IS et al (2007) A pragmatic protocol for reduction in the metal artifact and radiation dose in multislice computed tomography of the spine: cadaveric evaluation after cervical pedicle screw placement. J Comput Assist Tomogr 31(4):635–641CrossRefPubMed
9.
go back to reference Stradiotti P et al (2009) Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 18:S102–S108CrossRef Stradiotti P et al (2009) Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 18:S102–S108CrossRef
10.
go back to reference Link TM et al (2000) CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr 24(1):165–172CrossRefPubMed Link TM et al (2000) CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr 24(1):165–172CrossRefPubMed
11.
go back to reference Funama Y et al (2015) A newly-developed metal artifact reduction algorithm improves the visibility of oral cavity lesions on 320-MDCT volume scans. Physica Med-Eur J Med Phys 31(1):66–71CrossRef Funama Y et al (2015) A newly-developed metal artifact reduction algorithm improves the visibility of oral cavity lesions on 320-MDCT volume scans. Physica Med-Eur J Med Phys 31(1):66–71CrossRef
12.
go back to reference Zhang D, Li XH, Liu B (2011) Objective characterization of GE Discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 38(3):1178–1188CrossRefPubMed Zhang D, Li XH, Liu B (2011) Objective characterization of GE Discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 38(3):1178–1188CrossRefPubMed
13.
go back to reference Lee YH et al (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22(6):1331–1340CrossRefPubMed Lee YH et al (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22(6):1331–1340CrossRefPubMed
14.
go back to reference Wang Y et al (2013) Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 82(8):E360–E366CrossRefPubMed Wang Y et al (2013) Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 82(8):E360–E366CrossRefPubMed
15.
go back to reference Lewis M, Reid K, Toms AP (2013) Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skelet Radiol 42(2):275–282CrossRef Lewis M, Reid K, Toms AP (2013) Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skelet Radiol 42(2):275–282CrossRef
16.
go back to reference Thiel W (2002) Ergänzung für die Konservierung ganze Leichen nach W. Thiel Annals Anat 184:267–269CrossRef Thiel W (2002) Ergänzung für die Konservierung ganze Leichen nach W. Thiel Annals Anat 184:267–269CrossRef
17.
18.
go back to reference Lin XZ et al (2011) High-definition CT gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr 35(2):294–297CrossRefPubMed Lin XZ et al (2011) High-definition CT gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr 35(2):294–297CrossRefPubMed
19.
go back to reference van der Schaaf I et al (2006) Minimizing clip artifacts in multi CT angiography of clipped patients. Am J Neuroradiol 27(1):60–66PubMed van der Schaaf I et al (2006) Minimizing clip artifacts in multi CT angiography of clipped patients. Am J Neuroradiol 27(1):60–66PubMed
20.
go back to reference Thijssen M, Bijkerk K, van der Burgth R (1998) Manual contrast-detail phantom CDRAD type 2.0. Project quality assurance in radiology. Department of Radiology, University Hospital Nijmegen, St. Radboud, The Netherlands Thijssen M, Bijkerk K, van der Burgth R (1998) Manual contrast-detail phantom CDRAD type 2.0. Project quality assurance in radiology. Department of Radiology, University Hospital Nijmegen, St. Radboud, The Netherlands
21.
go back to reference AAPM report no.39 (1993) Specification and acceptance testing of computed tomography scanners. AAPM AAPM report no.39 (1993) Specification and acceptance testing of computed tomography scanners. AAPM
22.
go back to reference Samei E et al (2005) Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys 32(4):1205–1225CrossRefPubMed Samei E et al (2005) Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys 32(4):1205–1225CrossRefPubMed
23.
go back to reference Viner M et al (2013) Liver SULmean at FDG PET/CT: interreader agreement and impact of placement of volume of interest. Radiology 267(2):596–601CrossRefPubMed Viner M et al (2013) Liver SULmean at FDG PET/CT: interreader agreement and impact of placement of volume of interest. Radiology 267(2):596–601CrossRefPubMed
24.
go back to reference Vogel L et al (2009) Intra-rater agreement of the anorectal exam and classification of injury severity in children with spinal cord injury. Spinal Cord 47(9):687–691CrossRefPubMed Vogel L et al (2009) Intra-rater agreement of the anorectal exam and classification of injury severity in children with spinal cord injury. Spinal Cord 47(9):687–691CrossRefPubMed
25.
go back to reference Maroldi R et al (1996) Computed tomography scanning of supraglottic neoplasms: its cost effective use in preoperative staging. Acad Radiol 3:S57–S59CrossRefPubMed Maroldi R et al (1996) Computed tomography scanning of supraglottic neoplasms: its cost effective use in preoperative staging. Acad Radiol 3:S57–S59CrossRefPubMed
26.
go back to reference Chindasombatjaroen J et al (2011) Quantitative analysis of metallic artifacts caused by dental metals: comparison of cone-beam and multi-detector row CT scanners. Oral Radiol 27(2):114–120CrossRef Chindasombatjaroen J et al (2011) Quantitative analysis of metallic artifacts caused by dental metals: comparison of cone-beam and multi-detector row CT scanners. Oral Radiol 27(2):114–120CrossRef
27.
go back to reference Boas FE, Fleischmann D (2011) Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology 259(3):894–902CrossRefPubMed Boas FE, Fleischmann D (2011) Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology 259(3):894–902CrossRefPubMed
28.
go back to reference Kondo A et al (2010) Iterative correction applied to streak artifact reduction in an X-ray computed tomography image of the dento-alveolar region. Oral Radiol 26(1):61–65CrossRef Kondo A et al (2010) Iterative correction applied to streak artifact reduction in an X-ray computed tomography image of the dento-alveolar region. Oral Radiol 26(1):61–65CrossRef
29.
go back to reference Dong J et al (2013) Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region. Oral Surg Oral Med Oral Pathol Oral Radiol 115(2):E63–E73CrossRefPubMed Dong J et al (2013) Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region. Oral Surg Oral Med Oral Pathol Oral Radiol 115(2):E63–E73CrossRefPubMed
30.
go back to reference Zhou CS et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18(10):1252–1257CrossRefPubMed Zhou CS et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18(10):1252–1257CrossRefPubMed
31.
go back to reference Bamberg F et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429CrossRefPubMed Bamberg F et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429CrossRefPubMed
32.
go back to reference Wang FD et al (2014) Reduction of metal artifacts from alloy hip prostheses in computer tomography. J Comput Assist Tomogr 38(6):828–833CrossRefPubMed Wang FD et al (2014) Reduction of metal artifacts from alloy hip prostheses in computer tomography. J Comput Assist Tomogr 38(6):828–833CrossRefPubMed
33.
go back to reference Brook OR et al (2012) Spectral CT with metal artifacts reduction software for improvement of tumor visibility in the vicinity of gold fiducial markers. Radiology 263(3):696–705CrossRefPubMed Brook OR et al (2012) Spectral CT with metal artifacts reduction software for improvement of tumor visibility in the vicinity of gold fiducial markers. Radiology 263(3):696–705CrossRefPubMed
34.
go back to reference Pessis E et al (2013) Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 33(2):573–583CrossRefPubMed Pessis E et al (2013) Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 33(2):573–583CrossRefPubMed
Metadata
Title
Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?
Authors
An De Crop
Jan Casselman
Tom Van Hoof
Melissa Dierens
Elke Vereecke
Nicolas Bossu
Jaime Pamplona
Katharina D’Herde
Hubert Thierens
Klaus Bacher
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 8/2015
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-015-1537-1

Other articles of this Issue 8/2015

Neuroradiology 8/2015 Go to the issue