Skip to main content
Top
Published in: Neuroradiology 3/2015

01-03-2015 | Functional Neuroradiology

Diffusion tensor imaging parameters’ changes of cerebellar hemispheres in Parkinson’s disease

Authors: Enricomaria Mormina, Alessandro Arrigo, Alessandro Calamuneri, Francesca Granata, Angelo Quartarone, Maria F. Ghilardi, Matilde Inglese, Alessandro Di Rocco, Demetrio Milardi, Giuseppe P. Anastasi, Michele Gaeta

Published in: Neuroradiology | Issue 3/2015

Login to get access

Abstract

Introduction

Studies with diffusion tensor imaging (DTI) analysis have produced conflicting information about the involvement of the cerebellar hemispheres in Parkinson’s disease (PD). We, thus, used a new approach for the analysis of DTI parameters in order to ascertain the involvement of the cerebellum in PD.

Methods

We performed a fiber tract-based analysis of cerebellar peduncles and cerebellar hemispheres in 16 healthy subjects and in 16 PD patients with more than 5 years duration of disease, using a 3T MRI scanner and a constrained spherical deconvolution (CSD) approach for tractographic reconstructions. In addition, we performed statistical analysis of DTI parameters and fractional anisotropy (FA) XYZ direction samplings.

Results

We found a statistically significant decrement of FA values in PD patients compared to controls (p < 0.05). In addition, extrapolating and analyzing FA XYZ direction samplings for each patient and each control, we found that this result was due to a stronger decrement of FA values along the Y axis (antero-posterior direction) (p < 0.01); FA changes along X and Z axes were not statistically significant (p > 0.05). We confirmed also no statistically significant differences of FA and apparent diffusion coefficient (ADC) for cerebellar peduncles in PD patients compared to healthy controls.

Conclusions

The DTI-based cerebellar abnormalities in PD could constitute an advance in the knowledge of this disease. We demonstrated a statistically significant reduction of FA in cerebellar hemispheres of PD patients compared to healthy controls. Our work also demonstrated that the use of more sophisticated approaches in the DTI parameter analysis could potentially have a clinical relevance.
Literature
2.
go back to reference Damier P, Hirsch EC, Agid Y et al (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448CrossRefPubMed Damier P, Hirsch EC, Agid Y et al (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448CrossRefPubMed
3.
go back to reference Blandini F, Nappi G, Tassorelli C et al (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62(1):63–88CrossRefPubMed Blandini F, Nappi G, Tassorelli C et al (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62(1):63–88CrossRefPubMed
6.
go back to reference Jankovic J, Kapadia AS (2001) Functional decline in Parkinson disease. Arch Neurol 58(10):1611–1615CrossRefPubMed Jankovic J, Kapadia AS (2001) Functional decline in Parkinson disease. Arch Neurol 58(10):1611–1615CrossRefPubMed
7.
go back to reference Nicoletti G, Lodi R, Condino F et al (2006) Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson’s disease and progressive supranuclear palsy. Brain 129(Pt 10):2679–2687CrossRefPubMed Nicoletti G, Lodi R, Condino F et al (2006) Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson’s disease and progressive supranuclear palsy. Brain 129(Pt 10):2679–2687CrossRefPubMed
8.
go back to reference Kim HJ, Kim SJ, Kim HS et al (2013) Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson’s disease. Neurosci Lett 550:64–68CrossRefPubMed Kim HJ, Kim SJ, Kim HS et al (2013) Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson’s disease. Neurosci Lett 550:64–68CrossRefPubMed
9.
go back to reference Gattellaro G, Minati L, Grisoli M et al (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol 30(6):1222–1226CrossRefPubMed Gattellaro G, Minati L, Grisoli M et al (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol 30(6):1222–1226CrossRefPubMed
10.
go back to reference Schwarz ST, Abaei M, Gontu V et al (2013) Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. Neuroimage Clin 3:481–488CrossRefPubMedCentralPubMed Schwarz ST, Abaei M, Gontu V et al (2013) Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. Neuroimage Clin 3:481–488CrossRefPubMedCentralPubMed
11.
go back to reference Nicoletti G, Rizzo G, Barbagallo G et al (2013) Diffusivity of cerebellar hemispheres enables discrimination of cerebellar or parkinsonian multiple system atrophy from progressive supranuclear palsy-Richardson syndrome and Parkinson disease. Radiology 267(3):843–850CrossRefPubMed Nicoletti G, Rizzo G, Barbagallo G et al (2013) Diffusivity of cerebellar hemispheres enables discrimination of cerebellar or parkinsonian multiple system atrophy from progressive supranuclear palsy-Richardson syndrome and Parkinson disease. Radiology 267(3):843–850CrossRefPubMed
12.
go back to reference Embleton KV, Haroon HA, Morris DM et al (2010) Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes. Hum Brain Mapp 31:1570–1587CrossRefPubMed Embleton KV, Haroon HA, Morris DM et al (2010) Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes. Hum Brain Mapp 31:1570–1587CrossRefPubMed
13.
go back to reference Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525CrossRefPubMed Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525CrossRefPubMed
14.
go back to reference Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472CrossRefPubMed Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472CrossRefPubMed
15.
go back to reference Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820CrossRefPubMed Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820CrossRefPubMed
16.
go back to reference Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22(1):53–66CrossRef Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22(1):53–66CrossRef
17.
go back to reference Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540CrossRefPubMed Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540CrossRefPubMed
18.
go back to reference Descoteaux M, Deriche R, Knösche TR et al (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286CrossRefPubMed Descoteaux M, Deriche R, Knösche TR et al (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286CrossRefPubMed
19.
go back to reference Tournier JD, Calamante F, Connelly A (2011) Effect of step size on probabilistic streamlines: implications for the interpretation of connectivity analysis. Proc Intl Soc Mag Reson Med 19:2019 Tournier JD, Calamante F, Connelly A (2011) Effect of step size on probabilistic streamlines: implications for the interpretation of connectivity analysis. Proc Intl Soc Mag Reson Med 19:2019
20.
go back to reference Alexander DC, Barker GJ (2005) Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage 27:357–367CrossRefPubMed Alexander DC, Barker GJ (2005) Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage 27:357–367CrossRefPubMed
21.
go back to reference Leemans A, Jeurissen B, Sijbers J et al (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc Intl Soc Mag Reson Med 245:3537 Leemans A, Jeurissen B, Sijbers J et al (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc Intl Soc Mag Reson Med 245:3537
22.
go back to reference Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837CrossRef Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837CrossRef
23.
go back to reference Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076CrossRef Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076CrossRef
24.
go back to reference Parker GJ, Luzzi S, Alexander DC et al (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 24:656–666CrossRefPubMed Parker GJ, Luzzi S, Alexander DC et al (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 24:656–666CrossRefPubMed
25.
go back to reference Lebel C, Beaulieu C (2009) Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Hum Brain Mapp 30:3563–3573CrossRefPubMed Lebel C, Beaulieu C (2009) Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Hum Brain Mapp 30:3563–3573CrossRefPubMed
26.
go back to reference Ota M, Nakata Y, Ito K et al (2013) Differential diagnosis tool for parkinsonian syndrome using multiple structural brain measures. Comput Math Methods Med 2013:571289CrossRefPubMedCentralPubMed Ota M, Nakata Y, Ito K et al (2013) Differential diagnosis tool for parkinsonian syndrome using multiple structural brain measures. Comput Math Methods Med 2013:571289CrossRefPubMedCentralPubMed
27.
go back to reference Wang PS, Wu HM, Lin CP et al (2011) Use of diffusion tensor imaging to identify similarities and differences between cerebellar and Parkinsonism forms of multiple system atrophy. Neuroradiology 53(7):471–481CrossRefPubMed Wang PS, Wu HM, Lin CP et al (2011) Use of diffusion tensor imaging to identify similarities and differences between cerebellar and Parkinsonism forms of multiple system atrophy. Neuroradiology 53(7):471–481CrossRefPubMed
28.
go back to reference Zhang K, Yu C, Zhang Y et al (2011) Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease. Eur J Radiol 77(2):269–273CrossRefPubMed Zhang K, Yu C, Zhang Y et al (2011) Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease. Eur J Radiol 77(2):269–273CrossRefPubMed
29.
30.
31.
go back to reference Frayne R, Goodyear BG, Dickhoff P et al (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38(7):385–402PubMed Frayne R, Goodyear BG, Dickhoff P et al (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38(7):385–402PubMed
32.
go back to reference Vollmar C, O’Muircheartaigh J, Barker GJ et al (2010) Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners. Neuroimage 51(4):1384–1394CrossRefPubMedCentralPubMed Vollmar C, O’Muircheartaigh J, Barker GJ et al (2010) Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners. Neuroimage 51(4):1384–1394CrossRefPubMedCentralPubMed
33.
go back to reference Chung AW, Thomas DL, Ordidge RJ et al (2013) Diffusion tensor parameters and principal eigenvector coherence: relation to b-value intervals and field strength. Magn Reson Imaging 31(5):742–747CrossRefPubMed Chung AW, Thomas DL, Ordidge RJ et al (2013) Diffusion tensor parameters and principal eigenvector coherence: relation to b-value intervals and field strength. Magn Reson Imaging 31(5):742–747CrossRefPubMed
34.
go back to reference Wedeen VJ, Wang RP, Schmahmann JD et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4):1267–1277CrossRefPubMed Wedeen VJ, Wang RP, Schmahmann JD et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4):1267–1277CrossRefPubMed
35.
go back to reference Jbabdi S, Johansen-Berg H (2013) Tractography: where do we go from here? Brain Connect 1(3):169–183CrossRef Jbabdi S, Johansen-Berg H (2013) Tractography: where do we go from here? Brain Connect 1(3):169–183CrossRef
36.
go back to reference Tournier JD, Yeh CH, Calamante F et al (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42(2):617–625CrossRefPubMed Tournier JD, Yeh CH, Calamante F et al (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42(2):617–625CrossRefPubMed
37.
go back to reference Okada T, Miki Y, Fushimi Y et al (2006) Diffusion-tensor fiber tractography: intraindividual comparison of 3.0-T and 1.5-T MR imaging. Radiology 238(2):668–678CrossRefPubMed Okada T, Miki Y, Fushimi Y et al (2006) Diffusion-tensor fiber tractography: intraindividual comparison of 3.0-T and 1.5-T MR imaging. Radiology 238(2):668–678CrossRefPubMed
38.
go back to reference Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26(12):1775–1786CrossRefPubMed Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26(12):1775–1786CrossRefPubMed
39.
go back to reference Gallagher DA, Schapira AH (2009) Etiopathogenesis and treatment of Parkinson’s disease. Curr Top Med Chem 9(10):860–868PubMed Gallagher DA, Schapira AH (2009) Etiopathogenesis and treatment of Parkinson’s disease. Curr Top Med Chem 9(10):860–868PubMed
40.
go back to reference Piao YS, Mori F, Hayashi S et al (2003) Alpha-synuclein pathology affecting Bergmann glia of the cerebellum in patients with alpha-synucleinopathies. Acta Neuropathol 105(4):403–409PubMed Piao YS, Mori F, Hayashi S et al (2003) Alpha-synuclein pathology affecting Bergmann glia of the cerebellum in patients with alpha-synucleinopathies. Acta Neuropathol 105(4):403–409PubMed
41.
go back to reference Wakabayashi K, Hayashi S, Yoshimoto M et al (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99(1):14–20CrossRefPubMed Wakabayashi K, Hayashi S, Yoshimoto M et al (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99(1):14–20CrossRefPubMed
42.
go back to reference Mori F, Piao YS, Hayashi S et al (2003) Alpha-synuclein accumulates in Purkinje cells in Lewy body disease but not in multiple system atrophy. J Neuropathol Exp Neurol 62(8):812–819PubMed Mori F, Piao YS, Hayashi S et al (2003) Alpha-synuclein accumulates in Purkinje cells in Lewy body disease but not in multiple system atrophy. J Neuropathol Exp Neurol 62(8):812–819PubMed
43.
go back to reference Beaulieu C (2014) The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI. From quantitative measurements to in-vivo neuroanatomy. Elsevier, Amsterdam, pp 155–178 Beaulieu C (2014) The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI. From quantitative measurements to in-vivo neuroanatomy. Elsevier, Amsterdam, pp 155–178
44.
go back to reference Beaulieu C, Does MD, Snyder RE et al (1996) Changes in water diffusion due to Wallerian degeneration in peripheral nerve. Magn Reson Med 36:627–631CrossRefPubMed Beaulieu C, Does MD, Snyder RE et al (1996) Changes in water diffusion due to Wallerian degeneration in peripheral nerve. Magn Reson Med 36:627–631CrossRefPubMed
45.
go back to reference Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22(13):1852–1856CrossRefPubMed Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22(13):1852–1856CrossRefPubMed
46.
go back to reference Bartels AL, Willemsen AT, Doorduin J et al (2010) [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 16(1):57–59CrossRefPubMed Bartels AL, Willemsen AT, Doorduin J et al (2010) [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 16(1):57–59CrossRefPubMed
47.
go back to reference Watson MB, Richter F, Lee SK et al (2012) Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237(2):318–334CrossRefPubMedCentralPubMed Watson MB, Richter F, Lee SK et al (2012) Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237(2):318–334CrossRefPubMedCentralPubMed
48.
49.
go back to reference Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 20(8):1491–1499PubMed Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 20(8):1491–1499PubMed
50.
go back to reference Nicoletti G, Tonon C, Lodi R et al (2008) Apparent diffusion coefficient of the superior cerebellar peduncle differentiates progressive supranuclear palsy from Parkinson’s disease. Mov Disord 23(16):2370–2376CrossRefPubMed Nicoletti G, Tonon C, Lodi R et al (2008) Apparent diffusion coefficient of the superior cerebellar peduncle differentiates progressive supranuclear palsy from Parkinson’s disease. Mov Disord 23(16):2370–2376CrossRefPubMed
51.
go back to reference Blain CR, Barker GJ, Jarosz JM et al (2006) Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology 67(12):2199–2205CrossRefPubMed Blain CR, Barker GJ, Jarosz JM et al (2006) Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology 67(12):2199–2205CrossRefPubMed
52.
go back to reference Rizzo G, Martinelli P, Manners D et al (2008) Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson’s disease. Brain 131(Pt 10):2690–2700CrossRefPubMed Rizzo G, Martinelli P, Manners D et al (2008) Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson’s disease. Brain 131(Pt 10):2690–2700CrossRefPubMed
53.
go back to reference Parker GD, Marshall D, Rosin PL et al (2013) A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data. Neuroimage 65:433–448CrossRefPubMedCentralPubMed Parker GD, Marshall D, Rosin PL et al (2013) A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data. Neuroimage 65:433–448CrossRefPubMedCentralPubMed
Metadata
Title
Diffusion tensor imaging parameters’ changes of cerebellar hemispheres in Parkinson’s disease
Authors
Enricomaria Mormina
Alessandro Arrigo
Alessandro Calamuneri
Francesca Granata
Angelo Quartarone
Maria F. Ghilardi
Matilde Inglese
Alessandro Di Rocco
Demetrio Milardi
Giuseppe P. Anastasi
Michele Gaeta
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 3/2015
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-014-1473-5

Other articles of this Issue 3/2015

Neuroradiology 3/2015 Go to the issue