Skip to main content
Top
Published in: Neuroradiology 10/2011

01-10-2011 | Diagnostic Neuroradiology

MR perfusion and diffusion imaging in the follow-up of recurrent glioblastoma treated with dendritic cell immunotherapy: a pilot study

Authors: Matej Vrabec, Sofie Van Cauter, Uwe Himmelreich, Stefaan W. Van Gool, Stefan Sunaert, Steven De Vleeschouwer, Dušan Šuput, Philippe Demaerel

Published in: Neuroradiology | Issue 10/2011

Login to get access

Abstract

Introduction

This study aims to determine the potential value of MR-PWI and MR-DWI to differentiate immune therapy-induced inflammatory response from recurrent glioblastoma tumour growth. Both can present as contrast-enhancing lesions on conventional magnetic resonance imaging (MRI).

Methods

Patients with recurrent glioblastoma who could obtain a total or near-total resection were treated with dendritic cell immune therapy according to the HGG-IMMUNO-2003 trial. A retrospective analysis of 32 follow-up MRI examinations (mean follow-up time 21 months) in eight patients was performed for this pilot study. For the statistical analysis, the 32 examinations were divided into three groups: 0—obtained in patients that remained stable during the follow-up period, 1a—obtained in progressive-tumour patients at time points before definite progression and 1b—obtained in patients at or after progression.

Results

Maximum lesional rCBV ratios were highest in group 1b (Student t test, 9.25 ± 2.68; p < 0.001) and were higher in group 1a (4.87 ± 1.61, p < 0.001) compared to group 0 (1.22 ± 0.47). The minimum apparent diffusion coefficients (ADCs) in the contrast-enhancing regions were lower in group 1a (0.62 ± 0.06 × 10−3 mm2/s) than in group 0 (1.03 ± 0.43 × 10−3 mm2/s, p = 0.01) and higher in group 1b (0.76 ± 0.08) compared to 1a (p = 0.02). The minimum ADCs in the FLAIR-hyperintense region were lower in group 1a (0.62 ± 0.06, p = 0.02) compared to group 0 (0.76 ± 0.16) but not significantly different in group 1b (0.68 ± 0.07) from groups 0 and 1a (p = 0.33, p = 0.10). The mean ADCs of the FLAIR-hyperintense region and the mean ADCs of the contrast-enhancing lesion were not significantly different.

Conclusion

The maximum lesional rCBV ratios and minimum ADC values in the contrast-enhancing area are potential radiological markers to differentiate between immune therapy-induced inflammatory response and recurrent glioblastoma tumour growth in glioblastoma patients treated with immune therapy.
Literature
1.
go back to reference Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef
3.
go back to reference Gerstner ER, Duda DG, di Tomaso E, Sorensen G, Jain RK, Batchelor TT (2007) Antiangiogenic agents for the treatment of glioblastoma. Expert Opin Investig Drugs 16:1895–1908PubMedCrossRef Gerstner ER, Duda DG, di Tomaso E, Sorensen G, Jain RK, Batchelor TT (2007) Antiangiogenic agents for the treatment of glioblastoma. Expert Opin Investig Drugs 16:1895–1908PubMedCrossRef
4.
go back to reference Van Gool S, Maes W, Ardon H, Verschuere T, Van Cauter S, De Vleeschouwer S (2009) Dendritic cell therapy of high-grade gliomas. Brain Pathol 19:694–712PubMedCrossRef Van Gool S, Maes W, Ardon H, Verschuere T, Van Cauter S, De Vleeschouwer S (2009) Dendritic cell therapy of high-grade gliomas. Brain Pathol 19:694–712PubMedCrossRef
5.
go back to reference Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306PubMedCrossRef Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306PubMedCrossRef
6.
go back to reference Rutkowski S, De Vleeschouwer S, Kaempgen E et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662PubMed Rutkowski S, De Vleeschouwer S, Kaempgen E et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662PubMed
7.
go back to reference Wheeler CJ, Black KL, Liu G et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964PubMedCrossRef Wheeler CJ, Black KL, Liu G et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964PubMedCrossRef
8.
go back to reference Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979PubMedCrossRef Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979PubMedCrossRef
9.
go back to reference De Vleeschouwer S, Fieuws S, Rutkowski S et al (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14:3098–3104PubMedCrossRef De Vleeschouwer S, Fieuws S, Rutkowski S et al (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14:3098–3104PubMedCrossRef
10.
go back to reference De Vleeschouwer S, Van Calenbergh F, Demaerel P et al (2004) Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report J Neurosurg 100:492–497 De Vleeschouwer S, Van Calenbergh F, Demaerel P et al (2004) Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report J Neurosurg 100:492–497
11.
go back to reference Barrett T, Brechbiel M, Bernardo M, Choyke PL (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26:235–249PubMedCrossRef Barrett T, Brechbiel M, Bernardo M, Choyke PL (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26:235–249PubMedCrossRef
12.
go back to reference Le Bihan D, Turner R, Douek P, Patronas N (1992) Diffusion MR imaging: clinical applications. AJR Am J Roentgenol 159:591–599PubMed Le Bihan D, Turner R, Douek P, Patronas N (1992) Diffusion MR imaging: clinical applications. AJR Am J Roentgenol 159:591–599PubMed
13.
go back to reference Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486PubMed Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486PubMed
14.
go back to reference Barajas RFJ, Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496PubMedCrossRef Barajas RFJ, Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496PubMedCrossRef
15.
go back to reference Bobek-Billewicz B, Stasik-Pres G, Majchrzak H, Zarudzki L (2010) Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy. Folia Neuropathol 48:81–92PubMed Bobek-Billewicz B, Stasik-Pres G, Majchrzak H, Zarudzki L (2010) Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy. Folia Neuropathol 48:81–92PubMed
16.
go back to reference Jain R, Narang J, Sundgren PM et al (2010) Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neurooncol 100(1):17–29 Jain R, Narang J, Sundgren PM et al (2010) Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neurooncol 100(1):17–29
17.
go back to reference Baehring JM, Bi WL, Bannykh S, Piepmeier JM, Fulbright RK (2007) Diffusion MRI in the early diagnosis of malignant glioma. J Neurooncol 82:221–225PubMedCrossRef Baehring JM, Bi WL, Bannykh S, Piepmeier JM, Fulbright RK (2007) Diffusion MRI in the early diagnosis of malignant glioma. J Neurooncol 82:221–225PubMedCrossRef
18.
go back to reference Kikuchi T, Kumabe T, Higano S, Watanabe M, Tominaga T (2009) Minimum apparent diffusion coefficient for the differential diagnosis of ganglioglioma. Neurol Res 31:1102–1107PubMedCrossRef Kikuchi T, Kumabe T, Higano S, Watanabe M, Tominaga T (2009) Minimum apparent diffusion coefficient for the differential diagnosis of ganglioglioma. Neurol Res 31:1102–1107PubMedCrossRef
19.
go back to reference Chen J, Xia J, Zhou YC et al (2005) Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma. Zhonghua Zhong Liu Za Zhi 27:309–311PubMed Chen J, Xia J, Zhou YC et al (2005) Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma. Zhonghua Zhong Liu Za Zhi 27:309–311PubMed
20.
go back to reference Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209PubMed Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209PubMed
21.
go back to reference Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216PubMedCrossRef Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216PubMedCrossRef
22.
go back to reference Belliveau JW, Kennedy DNJ, McKinstry RC et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719PubMedCrossRef Belliveau JW, Kennedy DNJ, McKinstry RC et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719PubMedCrossRef
23.
go back to reference Macdonald DR, Cascino TL, Schold SCJ, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMed Macdonald DR, Cascino TL, Schold SCJ, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMed
24.
go back to reference Meyzer C, Dhermain F, Ducreux D et al (2010) A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI. Radiat Oncol 5:9PubMedCrossRef Meyzer C, Dhermain F, Ducreux D et al (2010) A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI. Radiat Oncol 5:9PubMedCrossRef
25.
go back to reference Roldan GB, Scott JN, McIntyre JB et al (2009) Population-based study of pseudoprogression after chemoradiotherapy in GBM. Can J Neurol Sci 36:617–622PubMed Roldan GB, Scott JN, McIntyre JB et al (2009) Population-based study of pseudoprogression after chemoradiotherapy in GBM. Can J Neurol Sci 36:617–622PubMed
26.
go back to reference Sanghera P, Perry J, Sahgal A et al (2010) Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can J Neurol Sci 37:36–42PubMed Sanghera P, Perry J, Sahgal A et al (2010) Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can J Neurol Sci 37:36–42PubMed
27.
go back to reference Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18PubMedCrossRef Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18PubMedCrossRef
28.
go back to reference Hamstra DA, Chenevert TL, Moffat BA et al (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci U S A 102:16759–16764PubMedCrossRef Hamstra DA, Chenevert TL, Moffat BA et al (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci U S A 102:16759–16764PubMedCrossRef
29.
go back to reference Jain R, Scarpace LM, Ellika S et al (2010) Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neurooncol 96:423–431PubMedCrossRef Jain R, Scarpace LM, Ellika S et al (2010) Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neurooncol 96:423–431PubMedCrossRef
30.
go back to reference Mangla R, Singh G, Ziegelitz D et al (2010) Changes in relative cerebral blood volume 1 month after radiation–temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 256:575–584PubMedCrossRef Mangla R, Singh G, Ziegelitz D et al (2010) Changes in relative cerebral blood volume 1 month after radiation–temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 256:575–584PubMedCrossRef
31.
go back to reference Padhani AR, Khan AA (2010) Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Target Oncol 5:39–52PubMedCrossRef Padhani AR, Khan AA (2010) Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Target Oncol 5:39–52PubMedCrossRef
32.
go back to reference Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649PubMedCrossRef Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649PubMedCrossRef
33.
go back to reference Tomura N, Narita K, Izumi J et al (2006) Diffusion changes in a tumor and peritumoral tissue after stereotactic irradiation for brain tumors: possible prediction of treatment response. J Comput Assist Tomogr 30:496–500PubMedCrossRef Tomura N, Narita K, Izumi J et al (2006) Diffusion changes in a tumor and peritumoral tissue after stereotactic irradiation for brain tumors: possible prediction of treatment response. J Comput Assist Tomogr 30:496–500PubMedCrossRef
34.
go back to reference Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487PubMed Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487PubMed
35.
go back to reference Aronen HJ, Perkio J (2002) Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 12:501–523PubMedCrossRef Aronen HJ, Perkio J (2002) Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 12:501–523PubMedCrossRef
36.
go back to reference Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372PubMedCrossRef Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372PubMedCrossRef
37.
go back to reference Bisdas S, Kirkpatrick M, Giglio P, Welsh C, Spampinato MV, Rumboldt Z (2009) Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol 30:681–688PubMedCrossRef Bisdas S, Kirkpatrick M, Giglio P, Welsh C, Spampinato MV, Rumboldt Z (2009) Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol 30:681–688PubMedCrossRef
38.
go back to reference Mitsuya K, Nakasu Y, Horiguchi S et al (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81–88PubMedCrossRef Mitsuya K, Nakasu Y, Horiguchi S et al (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81–88PubMedCrossRef
39.
go back to reference Danchaivijitr N, Waldman AD, Tozer DJ et al (2008) Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 247:170–178PubMedCrossRef Danchaivijitr N, Waldman AD, Tozer DJ et al (2008) Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 247:170–178PubMedCrossRef
40.
go back to reference Stecco A, Pisani C, Quarta R et al (2010) DTI and PWI analysis of peri-enhancing tumoral brain tissue in patients treated for glioblastoma. J Neurooncol. doi:10.1007/s11060-010-0310-x Stecco A, Pisani C, Quarta R et al (2010) DTI and PWI analysis of peri-enhancing tumoral brain tissue in patients treated for glioblastoma. J Neurooncol. doi:10.​1007/​s11060-010-0310-x
41.
go back to reference Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T (2006) Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 58:394–403PubMedCrossRef Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T (2006) Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 58:394–403PubMedCrossRef
42.
go back to reference Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 22:1306–1315PubMed Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 22:1306–1315PubMed
43.
go back to reference Yang D, Korogi Y, Sugahara T et al (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44:656–666PubMedCrossRef Yang D, Korogi Y, Sugahara T et al (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44:656–666PubMedCrossRef
44.
go back to reference Yamada K, Gonzalez RG, OStergaard L et al (2002) Iron-induced susceptibility effect at the globus pallidus causes underestimation of flow and volume on dynamic susceptibility contrast-enhanced MR perfusion images. AJNR Am J Neuroradiol 23:1022–1029PubMed Yamada K, Gonzalez RG, OStergaard L et al (2002) Iron-induced susceptibility effect at the globus pallidus causes underestimation of flow and volume on dynamic susceptibility contrast-enhanced MR perfusion images. AJNR Am J Neuroradiol 23:1022–1029PubMed
45.
go back to reference Kondziolka D, Bernstein M, Resch L et al (1987) Significance of hemorrhage into brain tumors: clinicopathological study. J Neurosurg 67:852–857PubMedCrossRef Kondziolka D, Bernstein M, Resch L et al (1987) Significance of hemorrhage into brain tumors: clinicopathological study. J Neurosurg 67:852–857PubMedCrossRef
46.
go back to reference Chawalparit O, Artkaew C, Anekthananon T, Tisavipat N, Charnchaowanish P, Sangruchi T (2009) Diagnostic accuracy of perfusion CT in differentiating brain abscess from necrotic tumor. J Med Assoc Thai 92:537–542PubMed Chawalparit O, Artkaew C, Anekthananon T, Tisavipat N, Charnchaowanish P, Sangruchi T (2009) Diagnostic accuracy of perfusion CT in differentiating brain abscess from necrotic tumor. J Med Assoc Thai 92:537–542PubMed
47.
go back to reference Chiang IC, Hsieh TJ, Chiu ML, Liu GC, Kuo YT, Lin WC (2009) Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging. Br J Radiol 82:813–820PubMedCrossRef Chiang IC, Hsieh TJ, Chiu ML, Liu GC, Kuo YT, Lin WC (2009) Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging. Br J Radiol 82:813–820PubMedCrossRef
48.
go back to reference Erdogan C, Hakyemez B, Yildirim N, Parlak M (2005) Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J Comput Assist Tomogr 29:663–667PubMedCrossRef Erdogan C, Hakyemez B, Yildirim N, Parlak M (2005) Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J Comput Assist Tomogr 29:663–667PubMedCrossRef
49.
go back to reference Hakyemez B, Erdogan C, Bolca N, Yildirim N, Gokalp G, Parlak M (2006) Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 24:817–824PubMedCrossRef Hakyemez B, Erdogan C, Bolca N, Yildirim N, Gokalp G, Parlak M (2006) Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 24:817–824PubMedCrossRef
50.
go back to reference Holmes TM, Petrella JR, Provenzale JM (2004) Distinction between cerebral abscesses and high-grade neoplasms by dynamic susceptibility contrast perfusion MRI. AJR Am J Roentgenol 183:1247–1252PubMed Holmes TM, Petrella JR, Provenzale JM (2004) Distinction between cerebral abscesses and high-grade neoplasms by dynamic susceptibility contrast perfusion MRI. AJR Am J Roentgenol 183:1247–1252PubMed
51.
go back to reference Muccio CF, Esposito G, Bartolini A, Cerase A (2008) Cerebral abscesses and necrotic cerebral tumours: differential diagnosis by perfusion-weighted magnetic resonance imaging. Radiol Med 113:747–757PubMedCrossRef Muccio CF, Esposito G, Bartolini A, Cerase A (2008) Cerebral abscesses and necrotic cerebral tumours: differential diagnosis by perfusion-weighted magnetic resonance imaging. Radiol Med 113:747–757PubMedCrossRef
52.
go back to reference Kitis O, Altay H, Calli C, Yunten N, Akalin T, Yurtseven T (2005) Minimum apparent diffusion coefficients in the evaluation of brain tumors. Eur J Radiol 55:393–400PubMedCrossRef Kitis O, Altay H, Calli C, Yunten N, Akalin T, Yurtseven T (2005) Minimum apparent diffusion coefficients in the evaluation of brain tumors. Eur J Radiol 55:393–400PubMedCrossRef
53.
go back to reference Arvinda HR, Kesavadas C, Sarma PS et al (2009) Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 94:87–96PubMedCrossRef Arvinda HR, Kesavadas C, Sarma PS et al (2009) Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 94:87–96PubMedCrossRef
54.
go back to reference Murakami R, Hirai T, Sugahara T et al (2009) Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology 251:838–845PubMedCrossRef Murakami R, Hirai T, Sugahara T et al (2009) Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology 251:838–845PubMedCrossRef
55.
go back to reference Sawlani V (2009) Diffusion-weighted imaging and apparent diffusion coefficient evaluation of herpes simplex encephalitis and Japanese encephalitis. J Neurol Sci 287:221–226PubMedCrossRef Sawlani V (2009) Diffusion-weighted imaging and apparent diffusion coefficient evaluation of herpes simplex encephalitis and Japanese encephalitis. J Neurol Sci 287:221–226PubMedCrossRef
56.
go back to reference Luthra G, Parihar A, Nath K et al (2007) Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. AJNR Am J Neuroradiol 28:1332–1338PubMedCrossRef Luthra G, Parihar A, Nath K et al (2007) Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. AJNR Am J Neuroradiol 28:1332–1338PubMedCrossRef
57.
go back to reference de Vleeschouwer S, Rapp M, Sorg RV et al (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59:988–999, discussion in 999–1000PubMed de Vleeschouwer S, Rapp M, Sorg RV et al (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59:988–999, discussion in 999–1000PubMed
Metadata
Title
MR perfusion and diffusion imaging in the follow-up of recurrent glioblastoma treated with dendritic cell immunotherapy: a pilot study
Authors
Matej Vrabec
Sofie Van Cauter
Uwe Himmelreich
Stefaan W. Van Gool
Stefan Sunaert
Steven De Vleeschouwer
Dušan Šuput
Philippe Demaerel
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 10/2011
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-010-0802-6

Other articles of this Issue 10/2011

Neuroradiology 10/2011 Go to the issue