Skip to main content
Top
Published in: Neuroradiology 10/2011

01-10-2011 | Diagnostic Neuroradiology

Gray matter concentration and effective connectivity changes in Alzheimer’s disease: a longitudinal structural MRI study

Authors: Xingfeng Li, Damien Coyle, Liam Maguire, David R Watson, Thomas M McGinnity

Published in: Neuroradiology | Issue 10/2011

Login to get access

Abstract

Introduction

Understanding disease progression in Alzheimer’s disease (AD) awaits the resolution of three fundamental questions: first, can we identify the location of “seed” regions where neuropathology is first present? Some studies have suggested the medial temporal lobe while others have suggested the hippocampus. Second, are there similar atrophy rates within affected regions in AD? Third, is there evidence of causality relationships between different affected regions in AD progression?

Methods

To address these questions, we conducted a longitudinal MRI study to investigate the gray matter (GM) changes in AD progression. Abnormal brain regions were localized by a standard voxel-based morphometry method, and the absolute atrophy rate in these regions was calculated using a robust regression method. Primary foci of atrophy were identified in the hippocampus and middle temporal gyrus (MTG). A model based upon the Granger causality approach was developed to investigate the cause–effect relationship over time between these regions based on GM concentration.

Results

Results show that in the earlier stages of AD, primary pathological foci are in the hippocampus and entorhinal cortex. Subsequently, atrophy appears to subsume the MTG.

Conclusion

The causality results show that there is in fact little difference between AD and age-matched healthy control in terms of hippocampus atrophy, but there are larger differences in MTG, suggesting that local pathology in MTG is the predominant progressive abnormality during intermediate stages of AD development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chetelat G, Degranges B, Sayette VDL, Viader F, Eustache, Baron JC (2002) Mapping grey matter loss with voxel-based morphometry in mild cognitive impairment. NeuroReport 13:1939–1943PubMedCrossRef Chetelat G, Degranges B, Sayette VDL, Viader F, Eustache, Baron JC (2002) Mapping grey matter loss with voxel-based morphometry in mild cognitive impairment. NeuroReport 13:1939–1943PubMedCrossRef
2.
go back to reference Karas G, Burton EJ, Rombouts SARB, Schijndel RAV, O'Brien JT, Scheltens PH, McKeith IG, Williams D, Ballard C, Barkhof F (2003) A comprehensive study of grey matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage 18:895–907PubMedCrossRef Karas G, Burton EJ, Rombouts SARB, Schijndel RAV, O'Brien JT, Scheltens PH, McKeith IG, Williams D, Ballard C, Barkhof F (2003) A comprehensive study of grey matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage 18:895–907PubMedCrossRef
3.
4.
go back to reference Davies RR, Scahill VL, Graham A, Williams GB, Graham KS, Hodges JR (2008) Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry. Neuroradiology 51:491–503CrossRef Davies RR, Scahill VL, Graham A, Williams GB, Graham KS, Hodges JR (2008) Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry. Neuroradiology 51:491–503CrossRef
5.
go back to reference Kakeda S, Korogi Y (2010) The efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer's disease/mild cognitive impairment: a review. Neuroradiology 52:711–721PubMedCrossRef Kakeda S, Korogi Y (2010) The efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer's disease/mild cognitive impairment: a review. Neuroradiology 52:711–721PubMedCrossRef
6.
go back to reference Takao H, Abe O, Ohtomo K (2010) Computational analysis of cerebral cortex. Neuroradiology 52:691–698PubMedCrossRef Takao H, Abe O, Ohtomo K (2010) Computational analysis of cerebral cortex. Neuroradiology 52:691–698PubMedCrossRef
7.
go back to reference Hirata Y, Matsuda H, Nemoto K, Ohnishi T, Hirao K, Yamashita F, Asada T, Iwabuchi S, Samejima H (2005) Voxel-based morphometry to discriminate early Alzheimer's disease from controls. Neurosci Lett 382:269–274PubMedCrossRef Hirata Y, Matsuda H, Nemoto K, Ohnishi T, Hirao K, Yamashita F, Asada T, Iwabuchi S, Samejima H (2005) Voxel-based morphometry to discriminate early Alzheimer's disease from controls. Neurosci Lett 382:269–274PubMedCrossRef
8.
go back to reference Li X, Messé A, Marrelec G, Pélégrini-Issac M, Benali H (2010) An enhanced voxel-based morphometry method to investigate structural changes: application to Alzheimer’s disease. Neuroradiology 52:203–213PubMedCrossRef Li X, Messé A, Marrelec G, Pélégrini-Issac M, Benali H (2010) An enhanced voxel-based morphometry method to investigate structural changes: application to Alzheimer’s disease. Neuroradiology 52:203–213PubMedCrossRef
9.
go back to reference Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, Desgranges B, Baron JC (2005) Using voxel-based morphometry to map the structrual changes associated with rapid conversion in MCI: A longitudinal MRI study. Neuroimage 27:934–946PubMedCrossRef Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, Desgranges B, Baron JC (2005) Using voxel-based morphometry to map the structrual changes associated with rapid conversion in MCI: A longitudinal MRI study. Neuroimage 27:934–946PubMedCrossRef
10.
go back to reference Nestor PJ, Schetens P, Hodges JR (2004) Advances in the early detection of Alzheimer's disease. Nat Rev Neurosci 7:s34–s41CrossRef Nestor PJ, Schetens P, Hodges JR (2004) Advances in the early detection of Alzheimer's disease. Nat Rev Neurosci 7:s34–s41CrossRef
11.
go back to reference Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, Rossor MN (1996) Presymptomatic hippocampal atrophy in Alzheimer's disease: a longitudinal MRI study. Brain 119:2001–2007PubMedCrossRef Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, Rossor MN (1996) Presymptomatic hippocampal atrophy in Alzheimer's disease: a longitudinal MRI study. Brain 119:2001–2007PubMedCrossRef
12.
go back to reference Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2007) 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain 130:1777–1786PubMedCrossRef Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2007) 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain 130:1777–1786PubMedCrossRef
13.
go back to reference Chan D, Janssen JC, Whitwell JL, Watt HC, Jenkins R, Frost C, Rossor MN, Fox NC (2003) Change in rates of cerebral atrophy over time in early-onset Alzheimer's disease: longitudinal MRI study. Lancet 362:1121–1122PubMedCrossRef Chan D, Janssen JC, Whitwell JL, Watt HC, Jenkins R, Frost C, Rossor MN, Fox NC (2003) Change in rates of cerebral atrophy over time in early-onset Alzheimer's disease: longitudinal MRI study. Lancet 362:1121–1122PubMedCrossRef
14.
go back to reference Schott JM, Fox NC, Frost C, Scahill RI, Jassen JC, Chan D, Jenkins R, Rossor MN (2003) Assessing the onset of structural change in familial Alzheimer's disease. Ann Neurol 53:181–188PubMedCrossRef Schott JM, Fox NC, Frost C, Scahill RI, Jassen JC, Chan D, Jenkins R, Rossor MN (2003) Assessing the onset of structural change in familial Alzheimer's disease. Ann Neurol 53:181–188PubMedCrossRef
15.
go back to reference Fox NC, Schott JM (2004) Imaging cerebral atrophy: normal ageing to Alzheimer's disease. Lancet 363:392–394PubMedCrossRef Fox NC, Schott JM (2004) Imaging cerebral atrophy: normal ageing to Alzheimer's disease. Lancet 363:392–394PubMedCrossRef
16.
go back to reference Schuff N, Woerner N, Boreta L, Kornfield T, Shaw LM, Trojanowski JQ, Thompson PM, Jack CR Jr, Weiner MW (2009) MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain 132:1067–1077PubMedCrossRef Schuff N, Woerner N, Boreta L, Kornfield T, Shaw LM, Trojanowski JQ, Thompson PM, Jack CR Jr, Weiner MW (2009) MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain 132:1067–1077PubMedCrossRef
17.
go back to reference Ridha BH, Barnes J, Barlett JW, Godolt A, Pepple T, Rossor MN, Fox NC (2006) Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol 5:824–834CrossRef Ridha BH, Barnes J, Barlett JW, Godolt A, Pepple T, Rossor MN, Fox NC (2006) Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol 5:824–834CrossRef
18.
go back to reference Schill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60:989–994CrossRef Schill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60:989–994CrossRef
19.
go back to reference Zeger SL, Liang KY (1991) Feedback models for discrete and continuous time series. Stat Sin 1:51–64 Zeger SL, Liang KY (1991) Feedback models for discrete and continuous time series. Stat Sin 1:51–64
20.
go back to reference Diggle PJ, Heagerty P, Liang KY, Zeger S (2003) Analysis of longitudinal data, 2nd edn. Oxford University Press, Oxford Diggle PJ, Heagerty P, Liang KY, Zeger S (2003) Analysis of longitudinal data, 2nd edn. Oxford University Press, Oxford
21.
22.
go back to reference Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRef Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRef
23.
go back to reference Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer's disease. Acta Neurol Scand Suppl 165:3–12PubMed Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer's disease. Acta Neurol Scand Suppl 165:3–12PubMed
24.
go back to reference Jack CR Jr, Weigand SD, Shiung MM, Przybelski SA, O'Brien PC, Gunter JL, Knopman DS, Boeve BF, Smith GE, Petersen RC (2008) Atrophy rates accelerate in Amnestic mild cognitive impairment. Neurology 70:1740–1752PubMedCrossRef Jack CR Jr, Weigand SD, Shiung MM, Przybelski SA, O'Brien PC, Gunter JL, Knopman DS, Boeve BF, Smith GE, Petersen RC (2008) Atrophy rates accelerate in Amnestic mild cognitive impairment. Neurology 70:1740–1752PubMedCrossRef
25.
go back to reference Jack CR Jr, Shiung MM, Gunter JL, O'Brien PC, Weigand SD, Knopman DS, Boeve BF, Ivnik RJ, Smith GE, Cha RH, Tangalos EG, Petersen RC (2004) Comparison of different MRI atrophy rate measures with clinical disease progression in AD. Neurology 62:591–600PubMed Jack CR Jr, Shiung MM, Gunter JL, O'Brien PC, Weigand SD, Knopman DS, Boeve BF, Ivnik RJ, Smith GE, Cha RH, Tangalos EG, Petersen RC (2004) Comparison of different MRI atrophy rate measures with clinical disease progression in AD. Neurology 62:591–600PubMed
26.
go back to reference Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23:3295–3301PubMed Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23:3295–3301PubMed
27.
go back to reference Marcus DS, Fotenos AF, Csernansky JG, Morris JC, Buckner RL (2009) Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J Cog Neurosci 22(12):2677–2678CrossRef Marcus DS, Fotenos AF, Csernansky JG, Morris JC, Buckner RL (2009) Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J Cog Neurosci 22(12):2677–2678CrossRef
28.
go back to reference Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cog Neurosci 19:1498–1507CrossRef Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cog Neurosci 19:1498–1507CrossRef
29.
go back to reference Morris JC (1997) Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogenatrics 9(suppl 1):173–176CrossRef Morris JC (1997) Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogenatrics 9(suppl 1):173–176CrossRef
30.
go back to reference Morris JC (1993) The clinical dementia rating (CDR): Current version and scoring rules. Neurology 43:2412b–2414b Morris JC (1993) The clinical dementia rating (CDR): Current version and scoring rules. Neurology 43:2412b–2414b
31.
go back to reference Talairach J, Tournoux P (1998) Coplanar stereotaxic atlas of the human brain. Thieme, Stuttgart Talairach J, Tournoux P (1998) Coplanar stereotaxic atlas of the human brain. Thieme, Stuttgart
33.
go back to reference Zhang Y, Brady M, Smith SM (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization. IEEE Trans Med Imag 21:45–47CrossRef Zhang Y, Brady M, Smith SM (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization. IEEE Trans Med Imag 21:45–47CrossRef
34.
go back to reference Jenkinson M, Smith SM (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156PubMedCrossRef Jenkinson M, Smith SM (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156PubMedCrossRef
35.
go back to reference Rueckert D, Sonda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imag 18:712–721CrossRef Rueckert D, Sonda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imag 18:712–721CrossRef
36.
go back to reference Nichols TE, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative reviews. Stat Meth Med Res 12:419–446CrossRef Nichols TE, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative reviews. Stat Meth Med Res 12:419–446CrossRef
37.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef
39.
go back to reference Bryk AS, Raudenbush SW (1992) Hierarchical linear models: applications and data analysis methods. Sage, New Delhi Bryk AS, Raudenbush SW (1992) Hierarchical linear models: applications and data analysis methods. Sage, New Delhi
40.
go back to reference Sullivan LM, Dukes KA, Losina E (1999) Tutorial in biostatistics: An introduction to hierarachical linear modelling. Statist Med 18:855–888CrossRef Sullivan LM, Dukes KA, Losina E (1999) Tutorial in biostatistics: An introduction to hierarachical linear modelling. Statist Med 18:855–888CrossRef
41.
go back to reference Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Changes in grey matter induced by training. Nature 427:311–312PubMedCrossRef Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Changes in grey matter induced by training. Nature 427:311–312PubMedCrossRef
42.
go back to reference Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Buchel C, May A (2006) Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci 26:6314–6317PubMedCrossRef Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Buchel C, May A (2006) Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci 26:6314–6317PubMedCrossRef
43.
go back to reference Salat DH, Tuch DS, van der Kouwe AJW, Greve DN, Pappu V, Lee SY, Hevelonea ND, Zalet AK, Growdon JH, Corkin S, Fischl B, Rosasa HD (2010) White matter pathology isolates the hippocampal formation in Alzheimer's disease. Neurobiol Aging 31:244–256PubMedCrossRef Salat DH, Tuch DS, van der Kouwe AJW, Greve DN, Pappu V, Lee SY, Hevelonea ND, Zalet AK, Growdon JH, Corkin S, Fischl B, Rosasa HD (2010) White matter pathology isolates the hippocampal formation in Alzheimer's disease. Neurobiol Aging 31:244–256PubMedCrossRef
44.
go back to reference Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, Miller BL, Weiner MW (2009) White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain 132:2579–2592PubMedCrossRef Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, Miller BL, Weiner MW (2009) White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain 132:2579–2592PubMedCrossRef
45.
go back to reference Fellgiebel A, Wille P, Muller MJ, Winterer G, Scheurich A, Vucurevic G, Schmidt LG, Stoeter P (2004) Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 18:101–108PubMedCrossRef Fellgiebel A, Wille P, Muller MJ, Winterer G, Scheurich A, Vucurevic G, Schmidt LG, Stoeter P (2004) Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 18:101–108PubMedCrossRef
46.
go back to reference Muller MJ, Greverus D, Dellani PR, Weibrich C, Wille PR, Scheurich A, Stoeter P, Fellgiebel A (2005) Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage 28:1033–1042PubMedCrossRef Muller MJ, Greverus D, Dellani PR, Weibrich C, Wille PR, Scheurich A, Stoeter P, Fellgiebel A (2005) Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage 28:1033–1042PubMedCrossRef
47.
go back to reference Chetelat G, Villain N, Desgranges B, Eustache F, Baron JC (2009) Posterior cingulate hypometabolism in early Alzheimer's disease: what is the contribution of local atrophy versus disconnection? Brain 132:1–2CrossRef Chetelat G, Villain N, Desgranges B, Eustache F, Baron JC (2009) Posterior cingulate hypometabolism in early Alzheimer's disease: what is the contribution of local atrophy versus disconnection? Brain 132:1–2CrossRef
48.
go back to reference Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96:3517–3531PubMedCrossRef Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96:3517–3531PubMedCrossRef
49.
go back to reference Seeley WM, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–56PubMedCrossRef Seeley WM, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–56PubMedCrossRef
50.
go back to reference Haan WD, Pijnenburg YL, Strijers RLM, Made YVD, Flier WMVD, Scheltens P, Stam CJ (2009) Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neurosci 10:1–12CrossRef Haan WD, Pijnenburg YL, Strijers RLM, Made YVD, Flier WMVD, Scheltens P, Stam CJ (2009) Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neurosci 10:1–12CrossRef
51.
go back to reference Stam CJ, Haan WDE, Daffertshofer A, Jones BF, Manshanden I, Van Cappellen V, Van Walsum AM, Montez T, Verbunt JPA, de Munck JC, Van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 132:213–224PubMedCrossRef Stam CJ, Haan WDE, Daffertshofer A, Jones BF, Manshanden I, Van Cappellen V, Van Walsum AM, Montez T, Verbunt JPA, de Munck JC, Van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 132:213–224PubMedCrossRef
52.
go back to reference Celone K, Calhoun V, Dickerson B, Atri A, Chua EF, Miller SL, DePeau K, Rentz DM, Selkoe DJ, Blacker D, Albert MS, Sperling RA (2006) Alterations in memory networks in mild cognitive impairment and Alzheimer's Disease: an independent component analysis. J Neurosci 26:10222–10231PubMedCrossRef Celone K, Calhoun V, Dickerson B, Atri A, Chua EF, Miller SL, DePeau K, Rentz DM, Selkoe DJ, Blacker D, Albert MS, Sperling RA (2006) Alterations in memory networks in mild cognitive impairment and Alzheimer's Disease: an independent component analysis. J Neurosci 26:10222–10231PubMedCrossRef
53.
go back to reference Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of Intrinsic functional brain connectivity in Alzheimer's Disease. PLoS Comput Biol 4:1–11CrossRef Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of Intrinsic functional brain connectivity in Alzheimer's Disease. PLoS Comput Biol 4:1–11CrossRef
54.
go back to reference Greicius MD, Srivastava G, Reiss A, Menon V (2004) Default-mode network activity distinguishes Alzheimer's Disease from healthy aging: Evidence from functional MRI. Proc Nat Acad Sci 101:4637–4642PubMedCrossRef Greicius MD, Srivastava G, Reiss A, Menon V (2004) Default-mode network activity distinguishes Alzheimer's Disease from healthy aging: Evidence from functional MRI. Proc Nat Acad Sci 101:4637–4642PubMedCrossRef
55.
go back to reference Lemieux L (2008) Causes, relationships and explanations: the power and limitations of observational longitudinal imaging studies. Curr Opin Neurol 21:391–392PubMedCrossRef Lemieux L (2008) Causes, relationships and explanations: the power and limitations of observational longitudinal imaging studies. Curr Opin Neurol 21:391–392PubMedCrossRef
56.
go back to reference Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRef Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRef
57.
go back to reference Good C, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36PubMedCrossRef Good C, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36PubMedCrossRef
58.
go back to reference Faes L, Nollo G, Chon KH (2008) Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann Biomed Eng 36:381–395PubMedCrossRef Faes L, Nollo G, Chon KH (2008) Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann Biomed Eng 36:381–395PubMedCrossRef
59.
go back to reference Shaman P, Stine RA (1998) The bias of autoregressive coefficient estimators. J Am Stat Assoc 83:842–848CrossRef Shaman P, Stine RA (1998) The bias of autoregressive coefficient estimators. J Am Stat Assoc 83:842–848CrossRef
60.
go back to reference Li X, Marrelec G, Hess RF, Benali H (2010) A nonlinear identification method to study effective connectivity in functional MRI. Med Image Analy 14:30–38CrossRef Li X, Marrelec G, Hess RF, Benali H (2010) A nonlinear identification method to study effective connectivity in functional MRI. Med Image Analy 14:30–38CrossRef
61.
go back to reference Wernerheim C (2000) Cointegration and causality in the exports-GDP nexus: the post-war evidence for Canada. Empirical Econ 25:111–125CrossRef Wernerheim C (2000) Cointegration and causality in the exports-GDP nexus: the post-war evidence for Canada. Empirical Econ 25:111–125CrossRef
62.
go back to reference Oxley L, Greasley D (1998) Vector autoregression, cointegration and causality: testing for causes of the British industrial revolution. Appl Econ 30:1387–1397CrossRef Oxley L, Greasley D (1998) Vector autoregression, cointegration and causality: testing for causes of the British industrial revolution. Appl Econ 30:1387–1397CrossRef
63.
go back to reference Doornik J (1996) Testing vector error autocorrelation and heteroscdasticity. The Econometric Society 7th World Congress, Tokyo, 1996. Doornik J (1996) Testing vector error autocorrelation and heteroscdasticity. The Econometric Society 7th World Congress, Tokyo, 1996.
64.
go back to reference Durbin J (1970) Testing for serial correlation in least squares regression when some of the regressors are lagged dependent variables. Econometrica 38:410–421CrossRef Durbin J (1970) Testing for serial correlation in least squares regression when some of the regressors are lagged dependent variables. Econometrica 38:410–421CrossRef
65.
go back to reference Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25CrossRef Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25CrossRef
66.
go back to reference Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39:1–38 Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39:1–38
67.
go back to reference Laird NM, Lange N, Stram D (1987) Maximum likelihood computations with repeated measures: Application of the EM algorithm. J Am Stat Assoc 82:97–105CrossRef Laird NM, Lange N, Stram D (1987) Maximum likelihood computations with repeated measures: Application of the EM algorithm. J Am Stat Assoc 82:97–105CrossRef
68.
69.
go back to reference Worsley K, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC (2002) A general statistical analysis for fMRI data. Neuroimage 15:1–15PubMedCrossRef Worsley K, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC (2002) A general statistical analysis for fMRI data. Neuroimage 15:1–15PubMedCrossRef
70.
go back to reference Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22, Neuroimage 11:805–821CrossRef Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22, Neuroimage 11:805–821CrossRef
Metadata
Title
Gray matter concentration and effective connectivity changes in Alzheimer’s disease: a longitudinal structural MRI study
Authors
Xingfeng Li
Damien Coyle
Liam Maguire
David R Watson
Thomas M McGinnity
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 10/2011
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-010-0795-1

Other articles of this Issue 10/2011

Neuroradiology 10/2011 Go to the issue