Skip to main content
Top
Published in: Neuroradiology 3/2008

01-03-2008 | Diagnostic Neuroradiology

The anterior cerebral artery is an appropriate arterial input function for perfusion-CT processing in patients with acute stroke

Authors: Max Wintermark, Benison C. Lau, Jeffrey Chien, Sandeep Arora

Published in: Neuroradiology | Issue 3/2008

Login to get access

Abstract

Introduction

Dynamic perfusion-CT (PCT) with deconvolution requires an arterial input function (AIF) for postprocessing. In clinical settings, the anterior cerebral artery (ACA) is often chosen for simplicity. The goals of this study were to determine how the AIF selection influences PCT results in acute stroke patients and whether the ACA is an appropriate default AIF.

Methods

We retrospectively identified consecutive patients suspected of hemispheric stroke of less than 48 h duration who were evaluated on admission by PCT. PCT datasets were postprocessed using multiple AIF, and cerebral blood volume (CBV) and flow (CBF), and mean transit time (MTT) values were measured in the corresponding territories. Results from corresponding territories in the same patients were compared using paired t-tests. The volumes of infarct core and tissue at risk obtained with different AIFs were compared to the final infarct volume.

Results

Of 113 patients who met the inclusion criteria, 55 with stroke were considered for analysis. The MTT values obtained with an “ischemic” AIF tended to be shorter (P=0.055) and the CBF values higher (P=0.108) than those obtained using a “nonischemic” AIF. CBV values were not influenced by the selection of the AIF. No statistically significant difference was observed between the size of the PCT infarct core (P=0.121) and tissue at risk (P=0.178), regardless of AIF selection.

Conclusion

In acute stroke patients, the selection of the AIF has no statistically significant impact of the PCT results; standardization of the PCT postprocessing using the ACA as the default AIF is adequate.
Literature
1.
go back to reference Ladurner G, Zilkha E, Iliff D, du Boulay GH, Marshall J (1976) Measurement of regional cerebral blood volume by computerized axial tomography. J Neurol Neurosurg Psychiatry 39:152–158PubMedCrossRef Ladurner G, Zilkha E, Iliff D, du Boulay GH, Marshall J (1976) Measurement of regional cerebral blood volume by computerized axial tomography. J Neurol Neurosurg Psychiatry 39:152–158PubMedCrossRef
2.
go back to reference Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473PubMedCrossRef Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473PubMedCrossRef
3.
go back to reference Tan JC, Dillon WP, Liu S, Adler F, Smith WS, Wintermark M (2007) Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 61:533–543PubMedCrossRef Tan JC, Dillon WP, Liu S, Adler F, Smith WS, Wintermark M (2007) Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 61:533–543PubMedCrossRef
4.
go back to reference Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11:1220–1230PubMedCrossRef Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11:1220–1230PubMedCrossRef
5.
go back to reference Axel L (1983) Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol 18:94–99PubMedCrossRef Axel L (1983) Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol 18:94–99PubMedCrossRef
6.
go back to reference Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, Pineda C, Serena J, van der Schaaf I, Waaijer A, Anderson J, Nesbit G, Gabriely I, Medina V, Quiles A, Pohlman S, Quist M, Schnyder P, Bogousslavsky J, Dillon WP, Pedraza S (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37:979–985PubMedCrossRef Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, Pineda C, Serena J, van der Schaaf I, Waaijer A, Anderson J, Nesbit G, Gabriely I, Medina V, Quiles A, Pohlman S, Quist M, Schnyder P, Bogousslavsky J, Dillon WP, Pedraza S (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37:979–985PubMedCrossRef
7.
go back to reference Lee T-Y (2002) Functional CT: physiological models. Trends Biotechnol 20:S3–S10CrossRef Lee T-Y (2002) Functional CT: physiological models. Trends Biotechnol 20:S3–S10CrossRef
8.
go back to reference Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36:715–725PubMedCrossRef Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36:715–725PubMedCrossRef
9.
go back to reference Turk AS, Grayev A, Rowley HA, Field AS, Turski P, Pulfer K, Mukherjee R, Haughton V (2007) Variability of clinical CT perfusion measurements in patients with carotid stenosis. Neuroradiology 49:955–961PubMedCrossRef Turk AS, Grayev A, Rowley HA, Field AS, Turski P, Pulfer K, Mukherjee R, Haughton V (2007) Variability of clinical CT perfusion measurements in patients with carotid stenosis. Neuroradiology 49:955–961PubMedCrossRef
10.
go back to reference Ostergaard L, Johannsen P, Host-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 18:935–940PubMedCrossRef Ostergaard L, Johannsen P, Host-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 18:935–940PubMedCrossRef
11.
go back to reference Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50:164–174PubMedCrossRef Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50:164–174PubMedCrossRef
12.
go back to reference Ibaraki M, Shimosegawa E, Toyoshima H, Takahashi K, Miura S, Kanno I (2005) Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 25:378–390PubMedCrossRef Ibaraki M, Shimosegawa E, Toyoshima H, Takahashi K, Miura S, Kanno I (2005) Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 25:378–390PubMedCrossRef
13.
go back to reference Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 43:559–564PubMedCrossRef Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 43:559–564PubMedCrossRef
14.
go back to reference Calamante F, Willats L, Gadian DG, Connelly A (2006) Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 55:1180–1185PubMedCrossRef Calamante F, Willats L, Gadian DG, Connelly A (2006) Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 55:1180–1185PubMedCrossRef
15.
go back to reference Ostergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19:690–699PubMedCrossRef Ostergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19:690–699PubMedCrossRef
16.
go back to reference Calamante F, Yim PJ, Cebral JR (2003) Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 19:341–353PubMedCrossRef Calamante F, Yim PJ, Cebral JR (2003) Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 19:341–353PubMedCrossRef
17.
go back to reference Lorenz C, Benner T, Chen PJ, Lopez CJ, Ay H, Zhu MW, Menezes NM, Aronen H, Karonen J, Liu Y, Nuutinen J, Sorensen AG (2006) Automated perfusion-weighted MRI using localized arterial input functions. J Magn Reson Imaging 24:1133–1139PubMedCrossRef Lorenz C, Benner T, Chen PJ, Lopez CJ, Ay H, Zhu MW, Menezes NM, Aronen H, Karonen J, Liu Y, Nuutinen J, Sorensen AG (2006) Automated perfusion-weighted MRI using localized arterial input functions. J Magn Reson Imaging 24:1133–1139PubMedCrossRef
18.
go back to reference Lorenz C, Benner T, Lopez CJ, Ay H, Zhu MW, Aronen H, Karonen J, Liu Y, Nuutinen J, Sorensen AG (2006) Effect of using local arterial input functions on cerebral blood flow estimation. J Magn Reson Imaging 24:57–65PubMedCrossRef Lorenz C, Benner T, Lopez CJ, Ay H, Zhu MW, Aronen H, Karonen J, Liu Y, Nuutinen J, Sorensen AG (2006) Effect of using local arterial input functions on cerebral blood flow estimation. J Magn Reson Imaging 24:57–65PubMedCrossRef
19.
go back to reference Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52:789–797PubMedCrossRef Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52:789–797PubMedCrossRef
20.
go back to reference Knutsson L, Larsson EM, Thilmann O, Stahlberg F, Wirestam R (2006) Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. J Magn Reson Imaging 23:444–453PubMedCrossRef Knutsson L, Larsson EM, Thilmann O, Stahlberg F, Wirestam R (2006) Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. J Magn Reson Imaging 23:444–453PubMedCrossRef
21.
go back to reference Essig M, Lodemann KP, Le-Huu M, Bruning R, Kirchin M, Reith W (2006) Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol 41:256–263PubMedCrossRef Essig M, Lodemann KP, Le-Huu M, Bruning R, Kirchin M, Reith W (2006) Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol 41:256–263PubMedCrossRef
22.
go back to reference Sanelli PC, Lev MH, Eastwood JD, Gonzalez RG, Lee TY (2004) The effect of varying user-selected input parameters on quantitative values in CT perfusion maps. Acad Radiol 11:1085–1092PubMedCrossRef Sanelli PC, Lev MH, Eastwood JD, Gonzalez RG, Lee TY (2004) The effect of varying user-selected input parameters on quantitative values in CT perfusion maps. Acad Radiol 11:1085–1092PubMedCrossRef
23.
go back to reference Bisdas S, Konstantinou GN, Gurung J, Lehnert T Donnerstag F, Becker H, Vogl TJ, Koh TS (2007) Effect of the arterial input function on the measured perfusion values and infarct volumetric in acute cerebral ischemia evaluated by perfusion computed tomography. Invest Radiol 42:147–156PubMedCrossRef Bisdas S, Konstantinou GN, Gurung J, Lehnert T Donnerstag F, Becker H, Vogl TJ, Koh TS (2007) Effect of the arterial input function on the measured perfusion values and infarct volumetric in acute cerebral ischemia evaluated by perfusion computed tomography. Invest Radiol 42:147–156PubMedCrossRef
24.
go back to reference Thijs VN, Somford DM, Bammer R, Robberecht W, Moseley ME, Albers GW (2004) Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging. Stroke 35:94–98PubMedCrossRef Thijs VN, Somford DM, Bammer R, Robberecht W, Moseley ME, Albers GW (2004) Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging. Stroke 35:94–98PubMedCrossRef
25.
go back to reference Schellinger PD, Latour LL, Wu CS, Chalela JA, Warach S (2006) The association between neurological deficit in acute ischemic stroke and mean transit time: comparison of four different perfusion MRI algorithms. Neuroradiology 48:69–77PubMedCrossRef Schellinger PD, Latour LL, Wu CS, Chalela JA, Warach S (2006) The association between neurological deficit in acute ischemic stroke and mean transit time: comparison of four different perfusion MRI algorithms. Neuroradiology 48:69–77PubMedCrossRef
Metadata
Title
The anterior cerebral artery is an appropriate arterial input function for perfusion-CT processing in patients with acute stroke
Authors
Max Wintermark
Benison C. Lau
Jeffrey Chien
Sandeep Arora
Publication date
01-03-2008
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 3/2008
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-007-0336-8

Other articles of this Issue 3/2008

Neuroradiology 3/2008 Go to the issue