Skip to main content
Top
Published in: Experimental Brain Research 8/2017

Open Access 01-08-2017 | Review

Network causality, axonal computations, and Poffenberger

Author: Giorgio M. Innocenti

Published in: Experimental Brain Research | Issue 8/2017

Login to get access

Abstract

All brain operations are implemented by networks of neurons. Unfortunately, the networks underlying even the most elementary brain operations remain elusive. This is due to the complexity of the networks, their heterogeneity, and to the multiple computations performed by the axons. Poffenberger’s paradigm is one example of a simple task aimed at characterizing the temporal properties of an interhemispheric network which has remained elusive to this day.
Literature
go back to reference Aboitiz F, Scheibel a B, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153CrossRefPubMed Aboitiz F, Scheibel a B, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153CrossRefPubMed
go back to reference Fromm C, Evarts EV (1981) Relation of size and activity of motor cortex pyramidal tract neurons during skilled movements in the monkey. J Neurosci 1:453–460PubMed Fromm C, Evarts EV (1981) Relation of size and activity of motor cortex pyramidal tract neurons during skilled movements in the monkey. J Neurosci 1:453–460PubMed
go back to reference Innocenti GM (1991) Pathways between development and evolution. In: Finlay B, Innocenti GM, Scheich H (eds) The Neocortex. Plenum Press, New York, pp 43–52CrossRef Innocenti GM (1991) Pathways between development and evolution. In: Finlay B, Innocenti GM, Scheich H (eds) The Neocortex. Plenum Press, New York, pp 43–52CrossRef
go back to reference Innocenti GM (1993) Organisation de l’ecorce cerebrale et “projet” des neurosciences. In Ansermet F, Innocenti GM, Steck A (eds) Payot, Lausanne, pp 35–44 Innocenti GM (1993) Organisation de l’ecorce cerebrale et “projet” des neurosciences. In Ansermet F, Innocenti GM, Steck A (eds) Payot, Lausanne, pp 35–44
go back to reference Innocenti GM (2011) Development and evolution: two determinants of cortical connectivity. Prog Brain Res 189:65–75CrossRefPubMed Innocenti GM (2011) Development and evolution: two determinants of cortical connectivity. Prog Brain Res 189:65–75CrossRefPubMed
go back to reference Innocenti GM (2017) Evolutionary-developmental aspect of cortical connectivity. In: Kaas JH (ed) Evolution of nervous systems, 2nd edn. Elsevier Inc/Academic Press, Oxford, pp 113–121CrossRef Innocenti GM (2017) Evolutionary-developmental aspect of cortical connectivity. In: Kaas JH (ed) Evolution of nervous systems, 2nd edn. Elsevier Inc/Academic Press, Oxford, pp 113–121CrossRef
go back to reference Innocenti GM, Caminiti R (2016) Axon diameter relates to synaptic bouton size: structural properties define computationally different types of cortical connections in primates. Brain Struct Funct. doi:10.1007/s00429-016-1266-1 Innocenti GM, Caminiti R (2016) Axon diameter relates to synaptic bouton size: structural properties define computationally different types of cortical connections in primates. Brain Struct Funct. doi:10.​1007/​s00429-016-1266-1
go back to reference Innocenti GM, Dyrby TB, Andersen KW et al (2016b) The crossed projection to the striatum in two species of monkey and in humans: behavioral and evolutionary significance. Cereb Cortex bhw161. doi:10.1093/cercor/bhw161 Innocenti GM, Dyrby TB, Andersen KW et al (2016b) The crossed projection to the striatum in two species of monkey and in humans: behavioral and evolutionary significance. Cereb Cortex bhw161. doi:10.​1093/​cercor/​bhw161
go back to reference Makarov V a, Schmidt KE, Castellanos NP et al (2008) Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius). Cereb Cortex 18:1951–1960. doi:10.1093/cercor/bhm222 CrossRefPubMed Makarov V a, Schmidt KE, Castellanos NP et al (2008) Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius). Cereb Cortex 18:1951–1960. doi:10.​1093/​cercor/​bhm222 CrossRefPubMed
go back to reference Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. Freeman, New York Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. Freeman, New York
go back to reference Paxinos G, Xu-Feng H, Toga WT (2000) The rhesus monkey brain. Academic Press, London Paxinos G, Xu-Feng H, Toga WT (2000) The rhesus monkey brain. Academic Press, London
go back to reference Tettamanti M, Paulesu E, Scifo P et al (2002) Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 88:1051–1058. doi:10.1152/jn.00417.2001 Tettamanti M, Paulesu E, Scifo P et al (2002) Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 88:1051–1058. doi:10.​1152/​jn.​00417.​2001
Metadata
Title
Network causality, axonal computations, and Poffenberger
Author
Giorgio M. Innocenti
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Experimental Brain Research / Issue 8/2017
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-017-4948-x

Other articles of this Issue 8/2017

Experimental Brain Research 8/2017 Go to the issue