Skip to main content
Top
Published in: Experimental Brain Research 3/2008

01-01-2008 | Research Article

Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation

Authors: Takenobu Murakami, Kenji Sakuma, Takashi Nomura, Yusuke Uemura, Isao Hashimoto, Kenji Nakashima

Published in: Experimental Brain Research | Issue 3/2008

Login to get access

Abstract

Paired-associative stimulation (PAS), combining electrical median nerve stimulation with transcranial magnetic stimulation (TMS) with a variable delay, causes long-term potentiation or depression (LTP/LTD)-like cortical plasticity. In the present study, we examined how PAS over the motor cortex affected a distant site, the somatosensory cortex. Furthermore, the influences of PAS on high-frequency oscillations (HFOs) were investigated to clarify the origin of HFOs. Interstimulus intervals between median nerve stimulation and TMS were 25 ms (PAS25) and 10 ms (PAS10). PAS was performed over the motor and somatosensory cortices. SEPs following median nerve stimulation were recorded before and after PAS. HFOs were isolated by 400–800 Hz band-pass filtering. PAS25 over the motor cortex increased the N20–P25 and P25–N33 amplitudes and the HFOs significantly. The enhancement of the P25–N33 amplitude and the late HFOs lasted more than 60 min. After PAS10 over the motor cortex, the N20–P25 and P25–N33 amplitudes decreased for 40 min, and the HFOs decreased for 60 min. Frontal SEPs were not affected after PAS over the motor cortex. PAS25/10 over the somatosensory cortex did not affect SEPs and HFOs. PAS25/10 over the motor cortex caused the LTP/LTD-like phenomena in a distant site, the somatosensory cortex. The PAS paradigms over the motor cortex can modify both the neural generators of SEPs and HFOs. HFOs may reflect the activation of GABAergic inhibitory interneurons regulating pyramidal neurons in the somatosensory cortex.
Literature
go back to reference Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62:711–722PubMed Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62:711–722PubMed
go back to reference Curio G (2000) Linking 600-Hz “spikelike” EEG/MEG wavelets (“sigma-bursts”) to cellular substrates: concepts and caveats. J Clin Neurophysiol 17:377–396PubMedCrossRef Curio G (2000) Linking 600-Hz “spikelike” EEG/MEG wavelets (“sigma-bursts”) to cellular substrates: concepts and caveats. J Clin Neurophysiol 17:377–396PubMedCrossRef
go back to reference Curio G, Mackert BM, Burghoff M, Koetitz R, Abraham-Fuchs K, Harer W (1994) Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroencephalogr Clin Neurophysiol 91:483–487PubMedCrossRef Curio G, Mackert BM, Burghoff M, Koetitz R, Abraham-Fuchs K, Harer W (1994) Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroencephalogr Clin Neurophysiol 91:483–487PubMedCrossRef
go back to reference Curio G, Mackert BM, Burghoff M, Neumann J, Nolte G, Scherg M, Marx P (1997) Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex. Neurosci Lett 234:131–134PubMedCrossRef Curio G, Mackert BM, Burghoff M, Neumann J, Nolte G, Scherg M, Marx P (1997) Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex. Neurosci Lett 234:131–134PubMedCrossRef
go back to reference Eisen A, Roberts K, Low M, Hoirch M, Lawrence P (1984) Questions regarding the sequential neural generator theory of the somatosensory evoked potential raised by digital filtering. Electroencephalogr Clin Neurophysiol 59:388–395PubMedCrossRef Eisen A, Roberts K, Low M, Hoirch M, Lawrence P (1984) Questions regarding the sequential neural generator theory of the somatosensory evoked potential raised by digital filtering. Electroencephalogr Clin Neurophysiol 59:388–395PubMedCrossRef
go back to reference Enomoto H, Ugawa Y, Hanajima R, Yuasa K, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158PubMedCrossRef Enomoto H, Ugawa Y, Hanajima R, Yuasa K, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158PubMedCrossRef
go back to reference Gobbele R, Buchner H, Curio G (1998) High-frequency (600 Hz) SEP activities originating in the subcortical and cortical human somatosensory system. Electroencephalogr Clin Neurophysiol 108:182–189PubMedCrossRef Gobbele R, Buchner H, Curio G (1998) High-frequency (600 Hz) SEP activities originating in the subcortical and cortical human somatosensory system. Electroencephalogr Clin Neurophysiol 108:182–189PubMedCrossRef
go back to reference Goldring S, Aras E, Weber PC (1970) Comparative study of sensory input to motor cortex in animals and man. Electroencephalogr Clin Neurophysiol 29:537–550PubMedCrossRef Goldring S, Aras E, Weber PC (1970) Comparative study of sensory input to motor cortex in animals and man. Electroencephalogr Clin Neurophysiol 29:537–550PubMedCrossRef
go back to reference Hashimoto I, Mashiko T, Imada T (1996) Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex. Electroencephalogr Clin Neurophysiol 100:189–203PubMedCrossRef Hashimoto I, Mashiko T, Imada T (1996) Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex. Electroencephalogr Clin Neurophysiol 100:189–203PubMedCrossRef
go back to reference Hashimoto I, Kimura T, Fukushima T, Iguchi Y, Saito Y, Terasaki O, Sakuma K (1999) Reciprocal modulation of somatosensory evoked N20m primary response and high-frequency oscillations by interference stimulation. Clin Neurophysiol 110:1445–1451PubMedCrossRef Hashimoto I, Kimura T, Fukushima T, Iguchi Y, Saito Y, Terasaki O, Sakuma K (1999) Reciprocal modulation of somatosensory evoked N20m primary response and high-frequency oscillations by interference stimulation. Clin Neurophysiol 110:1445–1451PubMedCrossRef
go back to reference Ishikawa S, Matsunaga K, Nakanishi R, Kawahira K, Murayama N, Tsuji S, Huang YZ, Rothwell JC (2007) Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol 118:1033–1043PubMedCrossRef Ishikawa S, Matsunaga K, Nakanishi R, Kawahira K, Murayama N, Tsuji S, Huang YZ, Rothwell JC (2007) Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol 118:1033–1043PubMedCrossRef
go back to reference Jones MS, Barth DS (2002) Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol 88:1016–1025PubMed Jones MS, Barth DS (2002) Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol 88:1016–1025PubMed
go back to reference Klostermann F, Gobbele R, Buchner H, Curio G (2002) Intrathalamic non-propagating generators of high-frequency (1000 Hz) somatosensory evoked potential (SEP) bursts recorded subcortically in man. Clin Neurophysiol 113:1001–1005PubMedCrossRef Klostermann F, Gobbele R, Buchner H, Curio G (2002) Intrathalamic non-propagating generators of high-frequency (1000 Hz) somatosensory evoked potential (SEP) bursts recorded subcortically in man. Clin Neurophysiol 113:1001–1005PubMedCrossRef
go back to reference Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 23:11026–11035PubMed Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 23:11026–11035PubMed
go back to reference Mochizuki H, Ugawa Y, Machii K, Terao Y, Hanajima R, Furubayashi T, Uesugi H, Kanazawa I (1999) Somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epilepsy. Clin Neurophysiol 110:185–191PubMedCrossRef Mochizuki H, Ugawa Y, Machii K, Terao Y, Hanajima R, Furubayashi T, Uesugi H, Kanazawa I (1999) Somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epilepsy. Clin Neurophysiol 110:185–191PubMedCrossRef
go back to reference Mochizuki H, Machii K, Terao Y, Furubayashi T, Hanajima R, Enomoto H, Uesugi H, Shiio Y, Kamakura K, Kanazawa I, Ugawa Y (2003) Recovery function of and effects of hyperventilation on somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epilepsy. Neurosci Res 46:485–492PubMedCrossRef Mochizuki H, Machii K, Terao Y, Furubayashi T, Hanajima R, Enomoto H, Uesugi H, Shiio Y, Kamakura K, Kanazawa I, Ugawa Y (2003) Recovery function of and effects of hyperventilation on somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epilepsy. Neurosci Res 46:485–492PubMedCrossRef
go back to reference Noel P, Ozaki I, Desmedt JE (1996) Origin of N18 and P14 far-fields of median nerve somatosensory evoked potentials studied in patients with a brain-stem lesion. Electroencephalogr Clin Neurophysiol 98:167–170PubMedCrossRef Noel P, Ozaki I, Desmedt JE (1996) Origin of N18 and P14 far-fields of median nerve somatosensory evoked potentials studied in patients with a brain-stem lesion. Electroencephalogr Clin Neurophysiol 98:167–170PubMedCrossRef
go back to reference Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, Mauguiere F, Shibasaki H, Sutherling W, Vibert JF (1994) IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 91:6–11PubMedCrossRef Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, Mauguiere F, Shibasaki H, Sutherling W, Vibert JF (1994) IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 91:6–11PubMedCrossRef
go back to reference Ogawa A, Ukai S, Shinosaki K, Yamamoto M, Kawaguchi S, Ishii R, Takeda M (2004) Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans. Neurosci Lett 358:193–196PubMedCrossRef Ogawa A, Ukai S, Shinosaki K, Yamamoto M, Kawaguchi S, Ishii R, Takeda M (2004) Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans. Neurosci Lett 358:193–196PubMedCrossRef
go back to reference Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21:2699–2710PubMed Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21:2699–2710PubMed
go back to reference Sakuma K, Hashimoto I (1999) High-frequency magnetic oscillations evoked by posterior tibial nerve stimulation. Neuroreport 10:227–230PubMedCrossRef Sakuma K, Hashimoto I (1999) High-frequency magnetic oscillations evoked by posterior tibial nerve stimulation. Neuroreport 10:227–230PubMedCrossRef
go back to reference Sakuma K, Sekihara K, Hashimoto I (1999) Neural source estimation from a time-frequency component of somatic evoked high-frequency magnetic oscillations to posterior tibial nerve stimulation. Clin Neurophysiol 110:1585–1588PubMedCrossRef Sakuma K, Sekihara K, Hashimoto I (1999) Neural source estimation from a time-frequency component of somatic evoked high-frequency magnetic oscillations to posterior tibial nerve stimulation. Clin Neurophysiol 110:1585–1588PubMedCrossRef
go back to reference Sakuma K, Takeshima T, Ishizaki K, Nakashima K (2004) Somatosensory evoked high-frequency oscillations in migraine patients. Clin Neurophysiol 115:1857–1862PubMedCrossRef Sakuma K, Takeshima T, Ishizaki K, Nakashima K (2004) Somatosensory evoked high-frequency oscillations in migraine patients. Clin Neurophysiol 115:1857–1862PubMedCrossRef
go back to reference Scheperjans F, Palomero-Gallagher N, Grefkes C, Schleicher A, Zilles K (2005) Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions. Neuroimage 28:362–379PubMedCrossRef Scheperjans F, Palomero-Gallagher N, Grefkes C, Schleicher A, Zilles K (2005) Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions. Neuroimage 28:362–379PubMedCrossRef
go back to reference Shimazu H, Kaji R, Tsujimoto T, Kohara N, Ikeda A, Kimura J, Shibasaki H (2000) High-frequency SEP components generated in the somatosensory cortex of the monkey. Neuroreport 11:2821–2826PubMedCrossRef Shimazu H, Kaji R, Tsujimoto T, Kohara N, Ikeda A, Kimura J, Shibasaki H (2000) High-frequency SEP components generated in the somatosensory cortex of the monkey. Neuroreport 11:2821–2826PubMedCrossRef
go back to reference Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584PubMedCrossRef Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584PubMedCrossRef
go back to reference Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543:699–708PubMedCrossRef Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543:699–708PubMedCrossRef
go back to reference Storozhuk VM, Khorevin VI, Razumna NN, Tetko IV, Villa AP (2003) The effects of activation of glutamate ionotropic connections of neurons in the sensorimotor cortex in a conditioned reflex. Neurosci Behav Physiol 33:479–488PubMedCrossRef Storozhuk VM, Khorevin VI, Razumna NN, Tetko IV, Villa AP (2003) The effects of activation of glutamate ionotropic connections of neurons in the sensorimotor cortex in a conditioned reflex. Neurosci Behav Physiol 33:479–488PubMedCrossRef
go back to reference Sun H, Ma CL, Kelly JB, Wu SH (2006a) GABA(B) receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neurosci Lett 399:151–156PubMedCrossRef Sun H, Ma CL, Kelly JB, Wu SH (2006a) GABA(B) receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neurosci Lett 399:151–156PubMedCrossRef
go back to reference Sun QQ, Huguenard JR, Prince DA (2006b) Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci 26:1219–1230PubMedCrossRef Sun QQ, Huguenard JR, Prince DA (2006b) Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci 26:1219–1230PubMedCrossRef
go back to reference Tsuji T, Rothwell JC (2002) Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. J Physiol 540:367–376PubMedCrossRef Tsuji T, Rothwell JC (2002) Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. J Physiol 540:367–376PubMedCrossRef
go back to reference Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Benecke R, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345PubMedCrossRef Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Benecke R, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345PubMedCrossRef
go back to reference Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, Benecke R, Reiners K, Classen J (2005) Timing-dependent plasticity in human primary somatosensory cortex. J Physiol 565:1039–1052PubMedCrossRef Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, Benecke R, Reiners K, Classen J (2005) Timing-dependent plasticity in human primary somatosensory cortex. J Physiol 565:1039–1052PubMedCrossRef
go back to reference Ziemann U, Hallett M, Cohen LG (1998) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18:7000–7007PubMed Ziemann U, Hallett M, Cohen LG (1998) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18:7000–7007PubMed
Metadata
Title
Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation
Authors
Takenobu Murakami
Kenji Sakuma
Takashi Nomura
Yusuke Uemura
Isao Hashimoto
Kenji Nakashima
Publication date
01-01-2008
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 3/2008
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-007-1103-0

Other articles of this Issue 3/2008

Experimental Brain Research 3/2008 Go to the issue