Skip to main content
Top
Published in: Experimental Brain Research 1/2007

01-10-2007 | Research Article

The effects of inverting prisms on the horizontal–vertical illusion: a systematic effect of downward gaze

Authors: Hans O. Richter, Patrik Wennberg, Jaanus Raudsepp

Published in: Experimental Brain Research | Issue 1/2007

Login to get access

Abstract

The purpose of this work is to compare the relative contributions from the extraocular and sensory systems on the magnitude of the horizontal–vertical illusion (HVI). The visual HVI refers to the general tendency to overestimate vertical extensions of small-scale lines on a picture plane relative to the horizontal by 4–16% depending on the method of measurement. The HVI line stimuli consisted of luminous vertical and horizontal lines forming “L-profiles” located in the frontoparallel plane at a 45 cm viewing distance, collinearly with a binocular gaze. The home position of gaze was aligned to the center of the screen with the ear–eye angle concordant with the environmental horizontal. Illusion strength was quantified when subjects fixated the HVI line stimuli in four quadrants of the visual field. The HVI was also viewed through prism lenses that inverted the retinal images by 180°, thereby dissociating the sensory “up-down” direction from the oculomotor up-down frame of reference. The results revealed a systematically lower magnitude of the HVI in the bottom visual field regardless of whether subjects fixated the HVI with the distorting prisms or without. Taken together, these results suggest that the HVI is sensitive to small-angle gaze shifts. In agreement with several recent findings, these results are interpreted as implying that the brain imposes an enhanced analytic structure on the ascending sensory information during downward gaze.
Literature
go back to reference Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330PubMedCrossRef Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330PubMedCrossRef
go back to reference Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci. 3:532–548PubMed Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci. 3:532–548PubMed
go back to reference Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 25:456–458CrossRef Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 25:456–458CrossRef
go back to reference Armstrong L, Marks E (1997) Differential effects of stimulus context on perceived length: implications for the horizontal-vertical illusion. Percept Psychophys 59:1200–1213PubMed Armstrong L, Marks E (1997) Differential effects of stimulus context on perceived length: implications for the horizontal-vertical illusion. Percept Psychophys 59:1200–1213PubMed
go back to reference Atchison DA, Claydon CA, Irwin SE (1994) Amplitude of accommodation for different head positions and different directions of eye gaze. Optom Vis Sci 71:339–345PubMedCrossRef Atchison DA, Claydon CA, Irwin SE (1994) Amplitude of accommodation for different head positions and different directions of eye gaze. Optom Vis Sci 71:339–345PubMedCrossRef
go back to reference Attneave F, Block G (1974) The time required to compare extents in various orientations Percept Psychophys 16:431–436 Attneave F, Block G (1974) The time required to compare extents in various orientations Percept Psychophys 16:431–436
go back to reference Binsted G, Heath M (2005) No evidence of a lower visual field specialization for visuomotor control. Exp Brain Res 162:89–94PubMedCrossRef Binsted G, Heath M (2005) No evidence of a lower visual field specialization for visuomotor control. Exp Brain Res 162:89–94PubMedCrossRef
go back to reference Brotchie PR, Andersen RA, Snyder LH, Goodman SJ (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 18:232–235CrossRef Brotchie PR, Andersen RA, Snyder LH, Goodman SJ (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 18:232–235CrossRef
go back to reference Dankert J, Goodale MA (2001) Superior performance for visually guided pointing in the lower visual field. Exp Brain Res 137:303–308CrossRef Dankert J, Goodale MA (2001) Superior performance for visually guided pointing in the lower visual field. Exp Brain Res 137:303–308CrossRef
go back to reference Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170PubMedCrossRef Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170PubMedCrossRef
go back to reference Girgus JS, Coren S (1975) Depth cues and constancy scaling in the horizontal-vertical illusion: the bisection error. Can J Psychol 29(1):59–65PubMed Girgus JS, Coren S (1975) Depth cues and constancy scaling in the horizontal-vertical illusion: the bisection error. Can J Psychol 29(1):59–65PubMed
go back to reference Von Grünau M, Dubé S (1994) Visual search asymmetry for viewing direction. Percept Psychophys 56:211–220 Von Grünau M, Dubé S (1994) Visual search asymmetry for viewing direction. Percept Psychophys 56:211–220
go back to reference Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMedCrossRef Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMedCrossRef
go back to reference Guski R, Rudolph R, Schindauer T (1993) Zur Funktionalität der “Vertikalen-Täuschung” [The functional aspects of horizontal-vertical illusion]. Ruhr-Universität Bochum, Fakultät für Psychologie Guski R, Rudolph R, Schindauer T (1993) Zur Funktionalität der “Vertikalen-Täuschung” [The functional aspects of horizontal-vertical illusion]. Ruhr-Universität Bochum, Fakultät für Psychologie
go back to reference Handy TC, Grafton ST, Shroff NM, Ketay S, Gazzaniga MS (2003) Graspable objects grab attention when the potential for action is recognized. Nat Neurosci 6:421–427PubMedCrossRef Handy TC, Grafton ST, Shroff NM, Ketay S, Gazzaniga MS (2003) Graspable objects grab attention when the potential for action is recognized. Nat Neurosci 6:421–427PubMedCrossRef
go back to reference He S, Cavanagh P, Intriligator J (1996) Attentional resolution and the locus of visual awareness. Nature 26:334–337CrossRef He S, Cavanagh P, Intriligator J (1996) Attentional resolution and the locus of visual awareness. Nature 26:334–337CrossRef
go back to reference Higashiyama A (1996) Horizontal and vertical distance perception: the discorded-orientation theory. Percept Psychophys 58:259–270PubMed Higashiyama A (1996) Horizontal and vertical distance perception: the discorded-orientation theory. Percept Psychophys 58:259–270PubMed
go back to reference Imamura K, Onoe H, Watanabe Y, Richter H, Andersson J, Fischer H, Magnusson S, Okura K, Schneider H, Fredrikson M, Långström B (2000) Pet imaging of the adaptation to prism-induced inverted vision. Invest Ophthalmol Vis Sci 39:1047 Imamura K, Onoe H, Watanabe Y, Richter H, Andersson J, Fischer H, Magnusson S, Okura K, Schneider H, Fredrikson M, Långström B (2000) Pet imaging of the adaptation to prism-induced inverted vision. Invest Ophthalmol Vis Sci 39:1047
go back to reference Khan MA, Lawrence GP (2005) Differences in visuomotor control between the upper and lower visual fields. Exp Brain Res 164:395–398PubMedCrossRef Khan MA, Lawrence GP (2005) Differences in visuomotor control between the upper and lower visual fields. Exp Brain Res 164:395–398PubMedCrossRef
go back to reference Kohler I, Pissarek T (1960) Brillenversuche zur Vertikalentäuschung [Spectacle experiments on horizontal-vertical illusion]. Psychol Beiträge 5:117–140 Kohler I, Pissarek T (1960) Brillenversuche zur Vertikalentäuschung [Spectacle experiments on horizontal-vertical illusion]. Psychol Beiträge 5:117–140
go back to reference Kubi E, Slotnick BM (1993) The horizontal-vertical illusion: transfer of illusion decrement. Percept Mot Skills 77:339–347PubMed Kubi E, Slotnick BM (1993) The horizontal-vertical illusion: transfer of illusion decrement. Percept Mot Skills 77:339–347PubMed
go back to reference Künnapas TM (1959) The vertical-horizontal illusion in artificial visual fields. J Psychol 47:41–48 Künnapas TM (1959) The vertical-horizontal illusion in artificial visual fields. J Psychol 47:41–48
go back to reference Lipshits M, McIntyre J, Zaoui M, Gurfinkel V, Berthoz A (2001) Does gravity play an essential role in the asymmetrical visual perception of vertical and horizontal line length? Acta Astronaut 49:123–130PubMedCrossRef Lipshits M, McIntyre J, Zaoui M, Gurfinkel V, Berthoz A (2001) Does gravity play an essential role in the asymmetrical visual perception of vertical and horizontal line length? Acta Astronaut 49:123–130PubMedCrossRef
go back to reference Levine MW, McAnany JJ (2005) The relative capabilities of the upper and lower visual hemifields. Vision Res 45(21):2820–2830PubMedCrossRef Levine MW, McAnany JJ (2005) The relative capabilities of the upper and lower visual hemifields. Vision Res 45(21):2820–2830PubMedCrossRef
go back to reference Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6:57–77PubMedCrossRef Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6:57–77PubMedCrossRef
go back to reference Merriam EP, Colby CL (2005) Active vision in parietal and extrastriate cortex. Neuroscientist 11:484–489PubMedCrossRef Merriam EP, Colby CL (2005) Active vision in parietal and extrastriate cortex. Neuroscientist 11:484–489PubMedCrossRef
go back to reference Portin K, Vanni S, Virsu V, Hari R (1999) Stronger occipital cortical activation to lower than upper visual field stimuli. Exp Brain Res 124:287–294PubMedCrossRef Portin K, Vanni S, Virsu V, Hari R (1999) Stronger occipital cortical activation to lower than upper visual field stimuli. Exp Brain Res 124:287–294PubMedCrossRef
go back to reference Previc FH (1990) Functional specialization in the lower and upper visual fields in humans: its ecological origins and neurophysiological implications. Behav Brain Sci 13:519–575 Previc FH (1990) Functional specialization in the lower and upper visual fields in humans: its ecological origins and neurophysiological implications. Behav Brain Sci 13:519–575
go back to reference Raudsepp J (2001) Peripersonal horizontal-vertical illusions: towards comparable kinesthetic and visual task. J Hum Mov Stud 41:263–286 Raudsepp J (2001) Peripersonal horizontal-vertical illusions: towards comparable kinesthetic and visual task. J Hum Mov Stud 41:263–286
go back to reference Raudsepp J, Djupsjöbacka M (2005) Handgrip maximum force and the visual horizontal-vertical illusion. Perception 34(4):421–428PubMedCrossRef Raudsepp J, Djupsjöbacka M (2005) Handgrip maximum force and the visual horizontal-vertical illusion. Perception 34(4):421–428PubMedCrossRef
go back to reference Richter H, Lee JT, Pardo J (2000) Central correlates of voluntary visual accommodation in humans measured with 15O-water and PET. Eur J Neurosci 12:311–321PubMedCrossRef Richter H, Lee JT, Pardo J (2000) Central correlates of voluntary visual accommodation in humans measured with 15O-water and PET. Eur J Neurosci 12:311–321PubMedCrossRef
go back to reference Richter H, Magnusson S, Imamura K, Fredrikson M, Okura M, Watanabe Y, Långström B (2002) Mental rotation and natural motor performance following successive stages of long term adaptation to prism reversed vision. Exp Brain Res 144:445–457PubMedCrossRef Richter H, Magnusson S, Imamura K, Fredrikson M, Okura M, Watanabe Y, Långström B (2002) Mental rotation and natural motor performance following successive stages of long term adaptation to prism reversed vision. Exp Brain Res 144:445–457PubMedCrossRef
go back to reference Schuller AM, Rossion B (2005) Spatial attention triggered by eye gaze enhances and speeds up visual processing in upper and lower visual fields beyond early striate visual processing. Clin Neurophysiol 116:2565–2576PubMedCrossRef Schuller AM, Rossion B (2005) Spatial attention triggered by eye gaze enhances and speeds up visual processing in upper and lower visual fields beyond early striate visual processing. Clin Neurophysiol 116:2565–2576PubMedCrossRef
go back to reference Servos P, Carnahan H, Fedwick J (2000) The visuomotor system resists the horizontal-vertical illusion. J Mot Behav 32:400–404PubMedCrossRef Servos P, Carnahan H, Fedwick J (2000) The visuomotor system resists the horizontal-vertical illusion. J Mot Behav 32:400–404PubMedCrossRef
go back to reference Talgar CP, Carrasco M (2002) Vertical meridian asymmetry in spatial resolution: visual and attentional factors. Psychon Bull Rev 9:714–722PubMed Talgar CP, Carrasco M (2002) Vertical meridian asymmetry in spatial resolution: visual and attentional factors. Psychon Bull Rev 9:714–722PubMed
go back to reference Trotter Y, Celebrini S (1999) Gaze direction controls response gain in primary visual-cortex neurons. Nature 18:239–242CrossRef Trotter Y, Celebrini S (1999) Gaze direction controls response gain in primary visual-cortex neurons. Nature 18:239–242CrossRef
Metadata
Title
The effects of inverting prisms on the horizontal–vertical illusion: a systematic effect of downward gaze
Authors
Hans O. Richter
Patrik Wennberg
Jaanus Raudsepp
Publication date
01-10-2007
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 1/2007
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-007-1015-z

Other articles of this Issue 1/2007

Experimental Brain Research 1/2007 Go to the issue