Skip to main content
Top
Published in: Experimental Brain Research 3-4/2005

01-10-2005 | Research Article

Crossmodal coupling of oculomotor control and spatial attention in vision and audition

Authors: Martin Rolfs, Ralf Engbert, Reinhold Kliegl

Published in: Experimental Brain Research | Issue 3-4/2005

Login to get access

Abstract

Fixational eye movements occur involuntarily during visual fixation of stationary scenes. The fastest components of these miniature eye movements are microsaccades, which can be observed about once per second. Recent studies demonstrated that microsaccades are linked to covert shifts of visual attention. Here, we generalized this finding in two ways. First, we used peripheral cues, rather than the centrally presented cues of earlier studies. Second, we spatially cued attention in vision and audition to visual and auditory targets. An analysis of microsaccade responses revealed an equivalent impact of visual and auditory cues on microsaccade-rate signature (i.e. an initial inhibition followed by an overshoot and a final return to the pre-cue baseline rate). With visual cues or visual targets, microsaccades were briefly aligned with cue direction and then opposite to cue direction during the overshoot epoch, probably as a result of an inhibition of an automatic saccade to the peripheral cue. With left auditory cues and auditory targets microsaccades oriented in cue direction. We argue that microsaccades can be used to study crossmodal integration of sensory information and to map the time course of saccade preparation during covert shifts of visual and auditory attention.
Footnotes
1
Pilot data of experiment 1 based on a subset of participants were reported in a commentary on Tse et al. (2003). We showed that microsaccade orientations were in good agreement with contralateral shifts of covert attention observed in response to peripherally flashed stimuli.
 
2
A Matlab implementation of the algorithm with a short sequence of experimental data can be downloaded at http://​www.​agnld.​uni-potsdam.​de/​~ralf/​micro/​.
 
3
Note that AV and VA must be primarily looked upon as control studies in the context of VV and AA rather than as experiments for the investigation of crossmodal effects. In our paradigm, the attentional shifts in the target modality induced by the spatial cues in their modality were not implicitly evoked, i.e. target modality was known in advance of target presentation. Therefore, attention shifts in AV and VA are not hard-wired crossmodally cued as for example Spence and Driver (1996, p1007) would say.
 
Literature
go back to reference Albano JE, Mishkin M, Westbrook LE, Wurtz RH (1982) Visuomotor deficits following ablation of monkey superior colliculus. J Neurophysiol 48:338–351 Albano JE, Mishkin M, Westbrook LE, Wurtz RH (1982) Visuomotor deficits following ablation of monkey superior colliculus. J Neurophysiol 48:338–351
go back to reference Bell AH, Corneil BD, Meredith MA, Munoz DP (2001) The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Can J Exp Psychol 55:123–132 Bell AH, Corneil BD, Meredith MA, Munoz DP (2001) The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Can J Exp Psychol 55:123–132
go back to reference Bell AH, Fecteau JH, Munoz DP (2004) Using auditory and visual stimuli to investigate the behavioral and neuronal consequences of reflexive covert orienting. J Neurophysiol 91:2172–2184 Bell AH, Fecteau JH, Munoz DP (2004) Using auditory and visual stimuli to investigate the behavioral and neuronal consequences of reflexive covert orienting. J Neurophysiol 91:2172–2184
go back to reference Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436 Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436
go back to reference Bridgeman B, Palca J (1980) The role of microsaccades in high acuity observational tasks. Vis Res 20:813–817 Bridgeman B, Palca J (1980) The role of microsaccades in high acuity observational tasks. Vis Res 20:813–817
go back to reference Brown S, Nicholls ME (1997) Hemispheric asymmetries for the temporal resolution of brief auditory stimuli. Percept Psychophys 59:442–447 Brown S, Nicholls ME (1997) Hemispheric asymmetries for the temporal resolution of brief auditory stimuli. Percept Psychophys 59:442–447
go back to reference Carpenter RHS (2000) The neural control of looking. Curr Biol 10:R291–R293 Carpenter RHS (2000) The neural control of looking. Curr Biol 10:R291–R293
go back to reference Corneil BD, Munoz DP (1996) The influence of auditory and visual distractors on human orienting gaze shifts. J Neurosci 16:8193–8207 Corneil BD, Munoz DP (1996) The influence of auditory and visual distractors on human orienting gaze shifts. J Neurosci 16:8193–8207
go back to reference Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Meth Ins C 34:613–617 Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Meth Ins C 34:613–617
go back to reference Desimone R, Wessinger CM, Thomas L, Schneider W (1989) Effects of deactivation of lateral pulvinar or superior colliculus on the ability to selectively attend to a visual stimulus. Abstr Soc Neurosci 15:162 Desimone R, Wessinger CM, Thomas L, Schneider W (1989) Effects of deactivation of lateral pulvinar or superior colliculus on the ability to selectively attend to a visual stimulus. Abstr Soc Neurosci 15:162
go back to reference Deubel H, Schneider W (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837 Deubel H, Schneider W (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837
go back to reference Doyle MC, Walker R (2002) Multisensory interactions in saccade target selection: curved saccade trajectories. Exp Brain Res 142:116–130 Doyle MC, Walker R (2002) Multisensory interactions in saccade target selection: curved saccade trajectories. Exp Brain Res 142:116–130
go back to reference Driver J, Spence C (1998) Attention and the crossmodal construction of space. Trends Cogn Sci 2:254–262 Driver J, Spence C (1998) Attention and the crossmodal construction of space. Trends Cogn Sci 2:254–262
go back to reference Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of covert attention. Vis Res 43:1035–1045 Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of covert attention. Vis Res 43:1035–1045
go back to reference Engbert R, Kliegl R (2004) Microsaccades keep the eyes‘ balance during fixation. Psychol Sci 15:431–436 Engbert R, Kliegl R (2004) Microsaccades keep the eyes‘ balance during fixation. Psychol Sci 15:431–436
go back to reference Engbert R, Longtin A, Kliegl R (2002) A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vis Res 42:621–636 Engbert R, Longtin A, Kliegl R (2002) A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vis Res 42:621–636
go back to reference Findlay JM, Walker R (1999) A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci 22:661–721 Findlay JM, Walker R (1999) A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci 22:661–721
go back to reference Galfano G, Betta E, Turatto M (2004) Inhibition of return in microsaccades. Exp Brain Res 159:400–404 Galfano G, Betta E, Turatto M (2004) Inhibition of return in microsaccades. Exp Brain Res 159:400–404
go back to reference Hafed ZM, Clark JJ (2002) Microsaccades as an overt measure of covert attention shifts. Vis Res 42:2533–2545 Hafed ZM, Clark JJ (2002) Microsaccades as an overt measure of covert attention shifts. Vis Res 42:2533–2545
go back to reference Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57:787–795 Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57:787–795
go back to reference Jay MF, Sparks DL (1987a) Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J Neurophysiol 57:22–34 Jay MF, Sparks DL (1987a) Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J Neurophysiol 57:22–34
go back to reference Jay MF, Sparks DL (1987b) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophysiol 57:35–55 Jay MF, Sparks DL (1987b) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophysiol 57:35–55
go back to reference Kinsbourne M (1970) The cerebral basis of lateral asymmetries in attention. Acta Psychol 33:193–201 Kinsbourne M (1970) The cerebral basis of lateral asymmetries in attention. Acta Psychol 33:193–201
go back to reference Kowler E, Steinman RM (1980) Small saccades serve no useful purpose: reply to a letter by R.W. Ditchburn. Vis Res 20:273–276 Kowler E, Steinman RM (1980) Small saccades serve no useful purpose: reply to a letter by R.W. Ditchburn. Vis Res 20:273–276
go back to reference Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35:1897–1916 Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35:1897–1916
go back to reference Kustov AA, Robinson DL (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77 Kustov AA, Robinson DL (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77
go back to reference Laubrock J, Engbert R, Kliegl R (2005) Microsaccade dynamics during covert attention. Vis Res 45:721–730 Laubrock J, Engbert R, Kliegl R (2005) Microsaccade dynamics during covert attention. Vis Res 45:721–730
go back to reference Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360 Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360
go back to reference Lueck CJ, Crawford TJ, Savage CJ, Kennard C (1990) Auditory-visual interaction in the generation of saccades in man. Exp Brain Res 82:149–157 Lueck CJ, Crawford TJ, Savage CJ, Kennard C (1990) Auditory-visual interaction in the generation of saccades in man. Exp Brain Res 82:149–157
go back to reference Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat Rev Neurosci 5:229–240 Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat Rev Neurosci 5:229–240
go back to reference Munoz DP, Istvan PJ (1998) Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J Neurophysiol 79:1193–1209 Munoz DP, Istvan PJ (1998) Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J Neurophysiol 79:1193–1209
go back to reference Munoz DP, Dorris MC, Par M, Everling S (2000) On your mark get set: brainstem circuitry underlying saccadic initiation. Can J Physiol Pharmacol 78:934–944 Munoz DP, Dorris MC, Par M, Everling S (2000) On your mark get set: brainstem circuitry underlying saccadic initiation. Can J Physiol Pharmacol 78:934–944
go back to reference Nicholls ME, Schier M, Stough CK, Box A (1999) Psychophysical and electrophysiological support for a left hemisphere temporal processing advantage. Neuropsychiatry Neuropsychol Behav Neurol 12:11–16 Nicholls ME, Schier M, Stough CK, Box A (1999) Psychophysical and electrophysiological support for a left hemisphere temporal processing advantage. Neuropsychiatry Neuropsychol Behav Neurol 12:11–16
go back to reference Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442 Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442
go back to reference Reingold EM, Stampe DM (2002) Saccadic inhibition in voluntary and reflexive saccades. J Cogn Neurosci 14:371–388 Reingold EM, Stampe DM (2002) Saccadic inhibition in voluntary and reflexive saccades. J Cogn Neurosci 14:371–388
go back to reference Reingold EM, Stampe DM (2004) Saccadic inhibition in reading. J Exp Psychol Hum Percept Perform 30:194–211 Reingold EM, Stampe DM (2004) Saccadic inhibition in reading. J Exp Psychol Hum Percept Perform 30:194–211
go back to reference Reuter-Lorenz PA, Kinsbourne M, Moscovitch M (1990) Hemispheric control of spatial attention. Brain Cogn 12:240–266 Reuter-Lorenz PA, Kinsbourne M, Moscovitch M (1990) Hemispheric control of spatial attention. Brain Cogn 12:240–266
go back to reference Reuter-Lorenz PA, Jha AP, Rosenquist JN (1996) What is inhibited in inhibition of return?. J Exp Psychol Hum Percept Perform 22:367–378 Reuter-Lorenz PA, Jha AP, Rosenquist JN (1996) What is inhibited in inhibition of return?. J Exp Psychol Hum Percept Perform 22:367–378
go back to reference Rizzolatti G, Riggio L, Dascola I, Umiltá C (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:31–40 Rizzolatti G, Riggio L, Dascola I, Umiltá C (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:31–40
go back to reference Rizzolatti G, Riggio L, Sheliga BM (1994) Space and selective attention. In: Umiltá C, Moscovitch M (eds) Attention and performance, vol 14, MIT, Cambridge, Mass., pp231–265 Rizzolatti G, Riggio L, Sheliga BM (1994) Space and selective attention. In: Umiltá C, Moscovitch M (eds) Attention and performance, vol 14, MIT, Cambridge, Mass., pp231–265
go back to reference Rolfs M, Engbert R, Kliegl R (2004) Microsaccade orientation supports attentional enhancement opposite a peripheral cue. Psychol Sci 15:705–707 Rolfs M, Engbert R, Kliegl R (2004) Microsaccade orientation supports attentional enhancement opposite a peripheral cue. Psychol Sci 15:705–707
go back to reference Rorden C, Driver J (1999) Does auditory attention shift in the direction of an upcoming saccade?. Neuropsychologia 37:357–377 Rorden C, Driver J (1999) Does auditory attention shift in the direction of an upcoming saccade?. Neuropsychologia 37:357–377
go back to reference Scudder CA, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142:439–462 Scudder CA, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142:439–462
go back to reference Sheliga BM, Riggio L, Rizzolatti G (1994) Orienting of attention and eye movements. Exp Brain Res 98:507–522 Sheliga BM, Riggio L, Rizzolatti G (1994) Orienting of attention and eye movements. Exp Brain Res 98:507–522
go back to reference Sheliga BM, Riggio L, Craighero L, Rizzolatti G (1995) Spatial attention-determined modifications in saccade trajectories. Neuroreport 6:585–588 Sheliga BM, Riggio L, Craighero L, Rizzolatti G (1995) Spatial attention-determined modifications in saccade trajectories. Neuroreport 6:585–588
go back to reference Sparks DL (2002) The brainstem control of saccadic eye movements. Nat Rev Neurosci 3:952–964 Sparks DL (2002) The brainstem control of saccadic eye movements. Nat Rev Neurosci 3:952–964
go back to reference Spence C, Driver J (1996) Audiovisual links in endogenous covert spatial orienting. J Exp Psychol Hum Percept Perform 22:1005–1030 Spence C, Driver J (1996) Audiovisual links in endogenous covert spatial orienting. J Exp Psychol Hum Percept Perform 22:1005–1030
go back to reference Spence C, Driver J (1998) Auditory and audiovisual inhibition of return. Percept Psychophys 60:125–139 Spence C, Driver J (1998) Auditory and audiovisual inhibition of return. Percept Psychophys 60:125–139
go back to reference Stein BE, Meredith MA (1993) The merging of the senses. MIT, Cambridge, Mass. Stein BE, Meredith MA (1993) The merging of the senses. MIT, Cambridge, Mass.
go back to reference Tse PU, Sheinberg DL, Logothetis NK (2003) Attentional enhancement opposite a peripheral flash revealed using change blindness. Psychol Sci 14:91–99 Tse PU, Sheinberg DL, Logothetis NK (2003) Attentional enhancement opposite a peripheral flash revealed using change blindness. Psychol Sci 14:91–99
go back to reference Wurtz RH (1996) Vision for the control of movements. The Friedenwald lecture. Invest Ophthalmol Vis Sci 37:2130–2145 Wurtz RH (1996) Vision for the control of movements. The Friedenwald lecture. Invest Ophthalmol Vis Sci 37:2130–2145
go back to reference Yao L, Peck CK (1997) Saccadic eye movements to visual and auditory targets. Exp Brain Res 115:25–34 Yao L, Peck CK (1997) Saccadic eye movements to visual and auditory targets. Exp Brain Res 115:25–34
go back to reference Zambarbieri D (2002) The latency of saccades toward auditory targets in humans. Prog Brain Res 140:51–59 Zambarbieri D (2002) The latency of saccades toward auditory targets in humans. Prog Brain Res 140:51–59
Metadata
Title
Crossmodal coupling of oculomotor control and spatial attention in vision and audition
Authors
Martin Rolfs
Ralf Engbert
Reinhold Kliegl
Publication date
01-10-2005
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 3-4/2005
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-005-2382-y

Other articles of this Issue 3-4/2005

Experimental Brain Research 3-4/2005 Go to the issue