Skip to main content
Top
Published in: Experimental Brain Research 1/2005

01-11-2005 | Research Article

Modulations among the alerting, orienting and executive control networks

Authors: Alicia Callejas, Juan Lupiàñez, María Jesús Funes, Pío Tudela

Published in: Experimental Brain Research | Issue 1/2005

Login to get access

Abstract

This paper reports a series of experiments that were carried out in order to study the attentional system. Three networks make up this system, and each of them specializes in particular processes. The executive control network specializes in control processes, such as conflict resolution or detection of errors; the orienting network directs the processing system to the source of input and enhances its processing; the alerting network prepares the system for a fast response by maintaining an adequate level of activation in the cognitive system. Recently, Fan and collaborators [J Cogn Neurosci 14(3):340–347, 2002] designed a task to measure the efficiency of each network. We modified Fan’s task to test the influences among the networks. We found that the executive control network is inhibited by the alerting network, whereas the orienting network raises the efficiency of the executive control network (Experiment 1). We also found that the alerting network influences the orienting network by speeding up its time course function (Experiment 2). Results were replicated in a third experiment, proving the effects to be stable over time, participants and experimental context, and to be potentially important as a tool for neuropsychological assessment.
Footnotes
1
However, it is worth mentioning that dissenting views reject the thought of attention as a system independent of those used for the processing of input and planning of responses (see Allport 1993; Rizzolatti et al. 2002 for elaborations on this point of view).
 
2
Even though the orienting network is not exclusively concerned with visual information, but with input coming from any sense, for the sake of simplicity we only mention the studies concerning visual orienting since it is the most relevant to our tasks. See Spence and Driver (2005) for a review on crossmodal spatial orienting or Correa et al. (2004) for temporal orienting.
 
3
We used this nomenclature instead of the usual “valid/invalid” one to emphasize the absence of contingence between the location of the cue and that of the target.
 
4
The same criteria were used for all the experiments.
 
5
The results of the interactions including all the levels of the variables were: Visual Cue × Congruency: F (4,92)=6.31; p<0.001; Auditory Signal × Congruency: F (2,46)=2.60; p=0.08; Auditory Signal × Visual Cue: F (2,46)=39.26; p<0.0001.
 
6
This is easily explained by arguing that visual cues already produce some alerting, thus reducing the net effect produced by an auditory cue (Fernandez-Duque and Posner 1997).
 
7
The results of the interactions, including all the levels of the variables, were: Visual Cue × Congruency: F (2,94)=17.69; p<0.0001; Auditory Signal × Congruency does not change since the neutral level of the congruency variable was eliminated from the design; Auditory Signal × Visual Cue: F (2,94)=20.92; p<0.0001; SOA × Auditory Signal × Visual Cue: F (2,94)=1.45; p<0.24; Auditory Signal × Visual Cue (SOA 100): F (2,94)=9.6; p<0.0005; Auditory Signal × Visual Cue (SOA500): F (2,94)=9.47; p<0.0005.
 
8
Again all the main effects, as well as the interactions, pointed in the same direction as the previous findings. Mean RT and error rates per condition can be found in Table 1. Main effects: Auditory Signal: F (1,24)=29.66; p<0.0001; Visual Cue: F (2,48)=50.69; p<0.0001 and Congruency: F (1,24)=129.74; p<0.0001. Interactions: Visual Cue × Congruency: F (1,24)=5.94; p<0.05; Auditory Signal × Congruency: F (1,24)=8.84; p<0.01 and Auditory Signal × Visual Cue: F (1,24)=17.36; p<0.0005. See Callejas et al. (2004) for an extended report of a similar study.
 
9
Inhibition of return was not found in our studies. When a task is complex enough (such as our difficult discrimination task) IOR is not observed unless SOAs much longer than ours are used (Lupiáñez et al. 1997)
 
Literature
go back to reference Allport A (1993) Attention and control: have we been asking the wrong question? A critical review of the last twenty-five years. In: Meyers DE, Kornblum S (eds) Attention and performance XIV. MIT Press, Cambridge, MA Allport A (1993) Attention and control: have we been asking the wrong question? A critical review of the last twenty-five years. In: Meyers DE, Kornblum S (eds) Attention and performance XIV. MIT Press, Cambridge, MA
go back to reference Berger A, Posner MI (2000) Pathologies of brain attentional networks. Neurosci Biobehav Rev 24(1):3–5CrossRefPubMed Berger A, Posner MI (2000) Pathologies of brain attentional networks. Neurosci Biobehav Rev 24(1):3–5CrossRefPubMed
go back to reference Callejas A, Lupiáñez J, Tudela P (2004) The three attentional networks: on their independence and interactions. Brain Cogn 54:225–227CrossRefPubMed Callejas A, Lupiáñez J, Tudela P (2004) The three attentional networks: on their independence and interactions. Brain Cogn 54:225–227CrossRefPubMed
go back to reference Casey BJ, Thomas KM, Welsh RF, Badgaiyan RD, Eccard CH, Jennings JR, Crone EA (2000) Dissociation of response conflict, attentional selection and expectancy with functional magnetic resonance imaging. Proc Natl Acad Sci USA 97(15):8728–8733CrossRefPubMed Casey BJ, Thomas KM, Welsh RF, Badgaiyan RD, Eccard CH, Jennings JR, Crone EA (2000) Dissociation of response conflict, attentional selection and expectancy with functional magnetic resonance imaging. Proc Natl Acad Sci USA 97(15):8728–8733CrossRefPubMed
go back to reference Cheal M, Chastain G (2002) Timing of facilitatory and inhibitory effects of visual attention. Visual Cogn 9:969–1002CrossRef Cheal M, Chastain G (2002) Timing of facilitatory and inhibitory effects of visual attention. Visual Cogn 9:969–1002CrossRef
go back to reference Clark CR, Geffen GM, Geffen LB (1989) Catecholamines and covert orientation of attention in humans. Neuropsychologia 27(2):131–139CrossRefPubMed Clark CR, Geffen GM, Geffen LB (1989) Catecholamines and covert orientation of attention in humans. Neuropsychologia 27(2):131–139CrossRefPubMed
go back to reference Cohen RM, Semple WE, Gross M, Holcomb HJ, Dowling SM, Nordahl TE (1988) Functional localization of sustained attention. Neuropsychiatry Neuropsychol Behav Neurol 1:3–20 Cohen RM, Semple WE, Gross M, Holcomb HJ, Dowling SM, Nordahl TE (1988) Functional localization of sustained attention. Neuropsychiatry Neuropsychol Behav Neurol 1:3–20
go back to reference Correa A, Lupiáñez J, Tudela P, Milliken B (2004) Endogenous temporal orienting of attention in detection and discrimination tasks. Percept Psychophys 66(2):264–278PubMed Correa A, Lupiáñez J, Tudela P, Milliken B (2004) Endogenous temporal orienting of attention in detection and discrimination tasks. Percept Psychophys 66(2):264–278PubMed
go back to reference Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483CrossRefPubMed Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483CrossRefPubMed
go back to reference Eimer M (2000) The time course of spatial orienting elicited by central and peripheral cues: evidence from event-related brain potentials. Biol Psychol 53:253–258CrossRefPubMed Eimer M (2000) The time course of spatial orienting elicited by central and peripheral cues: evidence from event-related brain potentials. Biol Psychol 53:253–258CrossRefPubMed
go back to reference Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16(1):143–149 Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16(1):143–149
go back to reference Fan J, Wu Y, Fossella JA, Posner MI (2001) Assessing the heritability of attentional networks. BMC Neurosci (electronic resource) 2:14–20CrossRef Fan J, Wu Y, Fossella JA, Posner MI (2001) Assessing the heritability of attentional networks. BMC Neurosci (electronic resource) 2:14–20CrossRef
go back to reference Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of the attentional networks. J Cogn Neurosci 14(3):340–347CrossRefPubMed Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of the attentional networks. J Cogn Neurosci 14(3):340–347CrossRefPubMed
go back to reference Fan J, McCandliss BD, Flombaum JI, Thomas KM, Posner MI (2003) Cognitive and brain consequences of conflict. Neuroimage 18:42–57CrossRefPubMed Fan J, McCandliss BD, Flombaum JI, Thomas KM, Posner MI (2003) Cognitive and brain consequences of conflict. Neuroimage 18:42–57CrossRefPubMed
go back to reference Fernandez-Duque D, Posner MI (1997) Relating the mechanisms of orienting and alerting. Neurosychologia 35(4):477–486CrossRef Fernandez-Duque D, Posner MI (1997) Relating the mechanisms of orienting and alerting. Neurosychologia 35(4):477–486CrossRef
go back to reference Fossella J, Posner MI, Fan J, Swanson JM, Pfaff DW (2002) Attentional phenotypes for the analysis of higher mental function. Sci World J 2:217–223 Fossella J, Posner MI, Fan J, Swanson JM, Pfaff DW (2002) Attentional phenotypes for the analysis of higher mental function. Sci World J 2:217–223
go back to reference Funes MJ, Lupiáñez J (2003) La teoría atencional de Posner: una tarea para medir las funciones atencionales de orientación, alerta y control cognitivo y la interacción entre ellas. Psicothema 15(2):260–266 Funes MJ, Lupiáñez J (2003) La teoría atencional de Posner: una tarea para medir las funciones atencionales de orientación, alerta y control cognitivo y la interacción entre ellas. Psicothema 15(2):260–266
go back to reference Funes MJ, Lupiáñez J, Milliken B (2005) Opposite effects of endogenous and exogenous spatial cues on the spatial stroop effect. J Exp Psychol Human (submitted) Funes MJ, Lupiáñez J, Milliken B (2005) Opposite effects of endogenous and exogenous spatial cues on the spatial stroop effect. J Exp Psychol Human (submitted)
go back to reference Jones EG (1985) The thalamus. Plenum, New York Jones EG (1985) The thalamus. Plenum, New York
go back to reference LaBerge D (2000) Networks of attention. In: Gazzaniga MS (ed) The new cognitive neurosciences, 2nd edn. MIT Press, Cambridge, MA LaBerge D (2000) Networks of attention. In: Gazzaniga MS (ed) The new cognitive neurosciences, 2nd edn. MIT Press, Cambridge, MA
go back to reference Lupiáñez J, Milán EG, Tornay F, Madrid E, Tudela P (1997) Does IOR occur in discrimination tasks? Yes, it does, but later. Percept Psychophys 59:1241–1254PubMed Lupiáñez J, Milán EG, Tornay F, Madrid E, Tudela P (1997) Does IOR occur in discrimination tasks? Yes, it does, but later. Percept Psychophys 59:1241–1254PubMed
go back to reference Marrocco RT, Davidson MC (1999) Neurochemistry of attention. In: Parasuraman J (ed) The attentive brain. MIT Press, Cambridge, MA Marrocco RT, Davidson MC (1999) Neurochemistry of attention. In: Parasuraman J (ed) The attentive brain. MIT Press, Cambridge, MA
go back to reference Milliken B, Lupiáñez J, Roberts M, Stevanovski B (2003) Orienting in space and time: joint contributions to exogenous spatial cuing effects. Psychon Bull Rev 10:877–883PubMed Milliken B, Lupiáñez J, Roberts M, Stevanovski B (2003) Orienting in space and time: joint contributions to exogenous spatial cuing effects. Psychon Bull Rev 10:877–883PubMed
go back to reference Morrison JH, Foote SL (1986) Noradrenergic and serotoninergic innervation of cortical, thalamic and tectal visual structures in Old and New World monkeys. J Comp Neurol 243(1):117–138CrossRefPubMed Morrison JH, Foote SL (1986) Noradrenergic and serotoninergic innervation of cortical, thalamic and tectal visual structures in Old and New World monkeys. J Comp Neurol 243(1):117–138CrossRefPubMed
go back to reference Müller HJ, Findlay JM (1988) The effect of visual attention on peripheral discrimination thresholds in single and multiple element displays. Acta Psychol 69(2):129–155CrossRef Müller HJ, Findlay JM (1988) The effect of visual attention on peripheral discrimination thresholds in single and multiple element displays. Acta Psychol 69(2):129–155CrossRef
go back to reference Müller HJ, Rabbitt PMA (1989) Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform 15:315–330CrossRefPubMed Müller HJ, Rabbitt PMA (1989) Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform 15:315–330CrossRefPubMed
go back to reference Norman DA, Shallice T (1986) Attention to action: willed and automatic control of behavior. In: Davidson RJ, Schwartz GE, Shapiro D (eds) Consciousness and self-regulation. Plenum, New York Norman DA, Shallice T (1986) Attention to action: willed and automatic control of behavior. In: Davidson RJ, Schwartz GE, Shapiro D (eds) Consciousness and self-regulation. Plenum, New York
go back to reference Posner MI (1978) Chronometric explorations of mind. Erlbaum, Hillsdale, NJ Posner MI (1978) Chronometric explorations of mind. Erlbaum, Hillsdale, NJ
go back to reference Posner MI (1994) Attention: the mechanisms of consciousness. Proc Natl Acad Sci USA 97:7398–7403CrossRef Posner MI (1994) Attention: the mechanisms of consciousness. Proc Natl Acad Sci USA 97:7398–7403CrossRef
go back to reference Posner MI, Boies SJ (1971) Components of attention. Psychol Rev 78(5):391–408CrossRef Posner MI, Boies SJ (1971) Components of attention. Psychol Rev 78(5):391–408CrossRef
go back to reference Posner MI, Cohen Y (1984) Components of visual orienting. In: Bouma H, Bouwhuis DG (eds) Attention and performance X. Erlbaum, Hillsdale, NJ, pp 531–556 Posner MI, Cohen Y (1984) Components of visual orienting. In: Bouma H, Bouwhuis DG (eds) Attention and performance X. Erlbaum, Hillsdale, NJ, pp 531–556
go back to reference Posner MI, Cohen A (1987) Isolating attentional systems: a cognitive-anatomical analysis. Psychobiology 15(2):107–121 Posner MI, Cohen A (1987) Isolating attentional systems: a cognitive-anatomical analysis. Psychobiology 15(2):107–121
go back to reference Posner MI, DiGirolamo FJ (1998) Executive attention: conflict, target deterction and cognitive control. In: Parasuraman R (ed) The attentive brain. MIT Press, Cambridge, MA Posner MI, DiGirolamo FJ (1998) Executive attention: conflict, target deterction and cognitive control. In: Parasuraman R (ed) The attentive brain. MIT Press, Cambridge, MA
go back to reference Posner MI, Fan J (2005) Attention as an organ system. In: Pomerantz J (ed) Neurobiology of perception and communication: from synapse to society. The IVth de Lange conference. Cambridge University Press, Cambridge, UK (in press) Posner MI, Fan J (2005) Attention as an organ system. In: Pomerantz J (ed) Neurobiology of perception and communication: from synapse to society. The IVth de Lange conference. Cambridge University Press, Cambridge, UK (in press)
go back to reference Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42CrossRefPubMed Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42CrossRefPubMed
go back to reference Posner MI, Raichle ME (1994) Images of mind. Scientific American Library, New York Posner MI, Raichle ME (1994) Images of mind. Scientific American Library, New York
go back to reference Rizzolatti G, Fadiga L, Fogassi L, Gallese V (2002) From mirror neurons to imitation: Facts and speculations. In: Meltzoff A, Prinz W (eds) The imitative mind. Oxford University Press, New York Rizzolatti G, Fadiga L, Fogassi L, Gallese V (2002) From mirror neurons to imitation: Facts and speculations. In: Meltzoff A, Prinz W (eds) The imitative mind. Oxford University Press, New York
go back to reference Robertson IH, Mattingley JB, Rorden C, Driver J (1998) Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395:169–172CrossRefPubMed Robertson IH, Mattingley JB, Rorden C, Driver J (1998) Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395:169–172CrossRefPubMed
go back to reference Sapir A, Rafal R, Henik A (2002) Attending to the thalamus: inhibition of return and nasal-temporal asymmetry in the pulvinar. Neuroreport 13(5):693–697CrossRefPubMed Sapir A, Rafal R, Henik A (2002) Attending to the thalamus: inhibition of return and nasal-temporal asymmetry in the pulvinar. Neuroreport 13(5):693–697CrossRefPubMed
go back to reference Schneider W, Eschman A, Zuccolotto A (2002) E-Prime user’s guide. Psychology Software Tools Inc., Pittsburgh, PA Schneider W, Eschman A, Zuccolotto A (2002) E-Prime user’s guide. Psychology Software Tools Inc., Pittsburgh, PA
go back to reference Spence C, Driver J (eds) (2004) Crossmodal space and crossmodal attention. Oxford University Press, Oxford Spence C, Driver J (eds) (2004) Crossmodal space and crossmodal attention. Oxford University Press, Oxford
go back to reference Sternberg S (1969) The discovery of processing stages: extensions of Donder’s method. Acta Psychol 30:276–315CrossRef Sternberg S (1969) The discovery of processing stages: extensions of Donder’s method. Acta Psychol 30:276–315CrossRef
go back to reference Sturm W, Willmes K (2001) On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14:S76–S84CrossRefPubMed Sturm W, Willmes K (2001) On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14:S76–S84CrossRefPubMed
go back to reference Thiel CM, Zilles K, Fink GR (2004) Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. Neuroimage 21:318–328CrossRefPubMed Thiel CM, Zilles K, Fink GR (2004) Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. Neuroimage 21:318–328CrossRefPubMed
Metadata
Title
Modulations among the alerting, orienting and executive control networks
Authors
Alicia Callejas
Juan Lupiàñez
María Jesús Funes
Pío Tudela
Publication date
01-11-2005
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 1/2005
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-005-2365-z

Other articles of this Issue 1/2005

Experimental Brain Research 1/2005 Go to the issue