Skip to main content
Top
Published in: Osteoporosis International 12/2018

01-12-2018 | Review Article

Notch in skeletal physiology and disease

Author: E. Canalis

Published in: Osteoporosis International | Issue 12/2018

Login to get access

Abstract

Notch (Notch1 through 4) are transmembrane receptors that play a fundamental role in cell differentiation and function. Notch receptors are activated following interactions with their ligands in neighboring cells. There are five classic ligands termed Jagged (Jag)1 and Jag2 and Delta-like (Dll)1, Dll3, and Dll4. Recent work has established Notch as a signaling pathway that plays a critical role in the differentiation and function of cells of the osteoblast and osteoclast lineages and in skeletal development and bone remodeling. The effects of Notch are cell-context dependent, and the four Notch receptors carry out specific functions in the skeleton. Gain- and loss-of-function mutations of components of the Notch signaling pathway result in a variety of congenital disorders with significant craniofacial and skeletal manifestations. The Notch ligand Jag1 is a determinant of bone mineral density, and Notch plays a role in the early phases of fracture healing. Alterations in Notch signaling are associated with osteosarcoma and with the metastatic potential of carcinoma of the breast and of the prostate. Controlling Notch signaling could prove useful in diseases of Notch gain-of-function and in selected skeletal disorders. However, clinical data on agents that modify Notch signaling are not available. In conclusion, Notch signaling is a novel pathway that regulates skeletal homeostasis in health and disease.
Literature
1.
go back to reference Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518PubMed Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518PubMed
2.
go back to reference Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305PubMedPubMedCentral Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305PubMedPubMedCentral
3.
go back to reference Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedPubMedCentral Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedPubMedCentral
4.
go back to reference Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314PubMedPubMedCentral Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314PubMedPubMedCentral
6.
go back to reference Canalis E, Adams DJ, Boskey A, Parker K, Kranz L, Zanotti S (2013) Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodeling. J Biol Chem 288:25614–25625PubMedPubMedCentral Canalis E, Adams DJ, Boskey A, Parker K, Kranz L, Zanotti S (2013) Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodeling. J Biol Chem 288:25614–25625PubMedPubMedCentral
7.
go back to reference Canalis E, Parker K, Feng JQ, Zanotti S (2013) Osteoblast lineage-specific effects of Notch activation in the skeleton. Endocrinology 154:623–634PubMed Canalis E, Parker K, Feng JQ, Zanotti S (2013) Osteoblast lineage-specific effects of Notch activation in the skeleton. Endocrinology 154:623–634PubMed
8.
go back to reference Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC (2004) Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 24:9265–9273PubMedPubMedCentral Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC (2004) Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 24:9265–9273PubMedPubMedCentral
9.
go back to reference Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedPubMedCentral Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedPubMedCentral
10.
go back to reference Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294PubMed Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294PubMed
11.
go back to reference Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255PubMed Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255PubMed
12.
go back to reference Kovall RA (2007) Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17:117–127PubMed Kovall RA (2007) Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17:117–127PubMed
13.
go back to reference Wu J, Bresnick EH (2007) Bare rudiments of notch signaling: how receptor levels are regulated. Trends Biochem Sci 32:477–485PubMed Wu J, Bresnick EH (2007) Bare rudiments of notch signaling: how receptor levels are regulated. Trends Biochem Sci 32:477–485PubMed
14.
go back to reference Yuan Z, Friedmann DR, Vanderwielen BD, Collins KJ, Kovall RA (2012) Characterization of CSL (CBF-1, Su(H), Lag-1) mutants reveals differences in signaling mediated by Notch1 and Notch2. J Biol Chem 287:34904–34916PubMedPubMedCentral Yuan Z, Friedmann DR, Vanderwielen BD, Collins KJ, Kovall RA (2012) Characterization of CSL (CBF-1, Su(H), Lag-1) mutants reveals differences in signaling mediated by Notch1 and Notch2. J Biol Chem 287:34904–34916PubMedPubMedCentral
15.
go back to reference Zanotti S, Canalis E (2017) Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 103:159–167PubMedPubMedCentral Zanotti S, Canalis E (2017) Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 103:159–167PubMedPubMedCentral
16.
go back to reference Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 281:6203–6210PubMed Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 281:6203–6210PubMed
17.
go back to reference Zanotti S, Canalis E (2014) Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Bone 62:22–28PubMedPubMedCentral Zanotti S, Canalis E (2014) Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Bone 62:22–28PubMedPubMedCentral
18.
go back to reference Canalis E, Bridgewater D, Schilling L, Zanotti S (2015) Canonical Notch activation in osteocytes causes osteopetrosis. Am J Phys Endocrinol Metab 310:E171–E182 Canalis E, Bridgewater D, Schilling L, Zanotti S (2015) Canonical Notch activation in osteocytes causes osteopetrosis. Am J Phys Endocrinol Metab 310:E171–E182
19.
go back to reference Tu X, Delgado-Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, Taketo MM, Burr DB, Plotkin LI, Bellido T (2015) Osteocytes mediate the anabolic actions of canonical Wnt/beta-catenin signaling in bone. Proc Natl Acad Sci U S A 112:E478–E486PubMedPubMedCentral Tu X, Delgado-Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, Taketo MM, Burr DB, Plotkin LI, Bellido T (2015) Osteocytes mediate the anabolic actions of canonical Wnt/beta-catenin signaling in bone. Proc Natl Acad Sci U S A 112:E478–E486PubMedPubMedCentral
20.
go back to reference Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875PubMed Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875PubMed
21.
go back to reference Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S (2003) Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101:2227–2234PubMed Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S (2003) Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101:2227–2234PubMed
22.
go back to reference Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB (2012) TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 209:319–334PubMedPubMedCentral Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB (2012) TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 209:319–334PubMedPubMedCentral
23.
go back to reference Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S (2016) Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis and bone resorption. J Biol Chem 291:1538–1551PubMed Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S (2016) Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis and bone resorption. J Biol Chem 291:1538–1551PubMed
24.
go back to reference Canalis E, Zanotti S (2017) Hairy and enhancer of split-related with YRPW motif-like (HeyL) is dispensable for bone remodeling in mice. J Cell Biochem 118:1819–1826PubMedPubMedCentral Canalis E, Zanotti S (2017) Hairy and enhancer of split-related with YRPW motif-like (HeyL) is dispensable for bone remodeling in mice. J Cell Biochem 118:1819–1826PubMedPubMedCentral
25.
go back to reference Salie R, Kneissel M, Vukevic M, Zamurovic N, Kramer I, Evans G, Gerwin N, Mueller M, Kinzel B, Susa M (2010) Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 46:680–694PubMed Salie R, Kneissel M, Vukevic M, Zamurovic N, Kramer I, Evans G, Gerwin N, Mueller M, Kinzel B, Susa M (2010) Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 46:680–694PubMed
26.
go back to reference Zanotti S, Canalis E (2013) Hairy and enhancer of split-related with YRPW motif (HEY)2 regulates bone remodeling in mice. J Biol Chem 288:21547–21557PubMedPubMedCentral Zanotti S, Canalis E (2013) Hairy and enhancer of split-related with YRPW motif (HEY)2 regulates bone remodeling in mice. J Biol Chem 288:21547–21557PubMedPubMedCentral
27.
go back to reference Zanotti S, Smerdel-Ramoya A, Canalis E (2011) Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem 286:2648–2657PubMed Zanotti S, Smerdel-Ramoya A, Canalis E (2011) Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem 286:2648–2657PubMed
28.
go back to reference Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMed Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMed
29.
go back to reference Duggan SP, McCarthy JV (2016) Beyond gamma-secretase activity: the multifunctional nature of presenilins in cell signalling pathways. Cell Signal 28:1–11PubMed Duggan SP, McCarthy JV (2016) Beyond gamma-secretase activity: the multifunctional nature of presenilins in cell signalling pathways. Cell Signal 28:1–11PubMed
30.
go back to reference del Alamo D, Rouault H, Schweisguth F (2011) Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 21:R40–R47PubMed del Alamo D, Rouault H, Schweisguth F (2011) Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 21:R40–R47PubMed
31.
go back to reference Zanotti S, Yu J, Adhikari S, Canalis E (2018) Glucocorticoids inhibit notch target gene expression in osteoblasts. J Cell Biochem 119:6016–6023PubMedPubMedCentral Zanotti S, Yu J, Adhikari S, Canalis E (2018) Glucocorticoids inhibit notch target gene expression in osteoblasts. J Cell Biochem 119:6016–6023PubMedPubMedCentral
32.
go back to reference Canalis E (2018) Clinical and experimental aspects of notch receptor signaling: Hajdu-Cheney syndrome and related disorders. Metabolism 80:48–56PubMed Canalis E (2018) Clinical and experimental aspects of notch receptor signaling: Hajdu-Cheney syndrome and related disorders. Metabolism 80:48–56PubMed
33.
go back to reference Isidor B, Lindenbaum P, Pichon O, Bézieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, le Merrer M, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, le Caignec C (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet 43:306–308PubMed Isidor B, Lindenbaum P, Pichon O, Bézieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, le Merrer M, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, le Caignec C (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet 43:306–308PubMed
34.
go back to reference Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43:303–305PubMed Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43:303–305PubMed
35.
go back to reference Zhao W, Petit E, Gafni RI, Collins MT, Robey PG, Seton M, Miller KK, Mannstadt M (2013) Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome. Osteoporos Int 24:2275–2281PubMedPubMedCentral Zhao W, Petit E, Gafni RI, Collins MT, Robey PG, Seton M, Miller KK, Mannstadt M (2013) Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome. Osteoporos Int 24:2275–2281PubMedPubMedCentral
36.
go back to reference Lehman RA, Stears JC, Wesenberg RL, Nusbaum ED (1977) Familial osteosclerosis with abnormalities of the nervous system and meninges. J Pediatr 90:49–54PubMed Lehman RA, Stears JC, Wesenberg RL, Nusbaum ED (1977) Familial osteosclerosis with abnormalities of the nervous system and meninges. J Pediatr 90:49–54PubMed
37.
go back to reference Gripp KW, Robbins KM, Sobreira NL et al (2015) Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am J Med Genet A 167A:271–281PubMed Gripp KW, Robbins KM, Sobreira NL et al (2015) Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am J Med Genet A 167A:271–281PubMed
39.
go back to reference Tian J, Ling L, Shboul M, Lee H, O'Connor B, Merriman B, Nelson SF, Cool S, Ababneh OH, al-Hadidy A, Masri A, Hamamy H, Reversade B (2010) Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet 87:768–778PubMedPubMedCentral Tian J, Ling L, Shboul M, Lee H, O'Connor B, Merriman B, Nelson SF, Cool S, Ababneh OH, al-Hadidy A, Masri A, Hamamy H, Reversade B (2010) Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet 87:768–778PubMedPubMedCentral
40.
go back to reference Stittrich AB, Lehman A, Bodian DL, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer RK, Vockley JG, Baveja R, Silva ES, Dixon J, Leon EL, Solomon BD, Glusman G, Niederhuber JE, Roach JC, Patel MS (2014) Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet 95:275–284PubMedPubMedCentral Stittrich AB, Lehman A, Bodian DL, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer RK, Vockley JG, Baveja R, Silva ES, Dixon J, Leon EL, Solomon BD, Glusman G, Niederhuber JE, Roach JC, Patel MS (2014) Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet 95:275–284PubMedPubMedCentral
41.
go back to reference Hassed SJ, Wiley GB, Wang S, Lee JY, Li S, Xu W, Zhao ZJ, Mulvihill JJ, Robertson J, Warner J, Gaffney PM (2012) RBPJ mutations identified in two families affected by Adams-Oliver syndrome. Am J Hum Genet 91:391–395PubMedPubMedCentral Hassed SJ, Wiley GB, Wang S, Lee JY, Li S, Xu W, Zhao ZJ, Mulvihill JJ, Robertson J, Warner J, Gaffney PM (2012) RBPJ mutations identified in two families affected by Adams-Oliver syndrome. Am J Hum Genet 91:391–395PubMedPubMedCentral
42.
go back to reference Meester JA, Southgate L, Stittrich AB et al (2015) Heterozygous loss-of-function mutations in DLL4 cause Adams-Oliver syndrome. Am J Hum Genet 97:475–482PubMedPubMedCentral Meester JA, Southgate L, Stittrich AB et al (2015) Heterozygous loss-of-function mutations in DLL4 cause Adams-Oliver syndrome. Am J Hum Genet 97:475–482PubMedPubMedCentral
43.
go back to reference Shaheen R, Aglan M, Keppler-Noreuil K, Faqeih E, Ansari S, Horton K, Ashour A, Zaki MS, al-Zahrani F, Cueto-González AM, Abdel-Salam G, Temtamy S, Alkuraya FS (2013) Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. Am J Hum Genet 92:598–604PubMedPubMedCentral Shaheen R, Aglan M, Keppler-Noreuil K, Faqeih E, Ansari S, Horton K, Ashour A, Zaki MS, al-Zahrani F, Cueto-González AM, Abdel-Salam G, Temtamy S, Alkuraya FS (2013) Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. Am J Hum Genet 92:598–604PubMedPubMedCentral
44.
go back to reference Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA (1999) Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829PubMed Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA (1999) Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829PubMed
45.
go back to reference Crosnier C, Driancourt C, Raynaud N, Dhorne-Pollet S, Pollet N, Bernard O, Hadchouel M, Meunier-Rotival M (1999) Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. Gastroenterology 116:1141–1148PubMed Crosnier C, Driancourt C, Raynaud N, Dhorne-Pollet S, Pollet N, Bernard O, Hadchouel M, Meunier-Rotival M (1999) Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. Gastroenterology 116:1141–1148PubMed
46.
go back to reference Kamath BM, Bauer RC, Loomes KM, Chao G, Gerfen J, Hutchinson A, Hardikar W, Hirschfield G, Jara P, Krantz ID, Lapunzina P, Leonard L, Ling S, Ng VL, Hoang PL, Piccoli DA, Spinner NB (2012) NOTCH2 mutations in Alagille syndrome. J Med Genet 49:138–144PubMed Kamath BM, Bauer RC, Loomes KM, Chao G, Gerfen J, Hutchinson A, Hardikar W, Hirschfield G, Jara P, Krantz ID, Lapunzina P, Leonard L, Ling S, Ng VL, Hoang PL, Piccoli DA, Spinner NB (2012) NOTCH2 mutations in Alagille syndrome. J Med Genet 49:138–144PubMed
47.
go back to reference McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173PubMedPubMedCentral McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173PubMedPubMedCentral
48.
go back to reference Dunwoodie SL, Clements M, Sparrow DB, Sa X, Conlon RA, Beddington RS (2002) Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129:1795–1806PubMed Dunwoodie SL, Clements M, Sparrow DB, Sa X, Conlon RA, Beddington RS (2002) Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129:1795–1806PubMed
49.
go back to reference Cornier AS, Staehling-Hampton K, Delventhal KM, Saga Y, Caubet JF, Sasaki N, Ellard S, Young E, Ramirez N, Carlo SE, Torres J, Emans JB, Turnpenny PD, Pourquié O (2008) Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet 82:1334–1341PubMedPubMedCentral Cornier AS, Staehling-Hampton K, Delventhal KM, Saga Y, Caubet JF, Sasaki N, Ellard S, Young E, Ramirez N, Carlo SE, Torres J, Emans JB, Turnpenny PD, Pourquié O (2008) Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet 82:1334–1341PubMedPubMedCentral
50.
go back to reference Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37PubMed Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37PubMed
51.
go back to reference Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL (2008) Mutation of hairy-and-enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17:3761–3766PubMed Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL (2008) Mutation of hairy-and-enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17:3761–3766PubMed
52.
go back to reference Descartes M, Rojnueangnit K, Cole L, Sutton A, Morgan SL, Patry L, Samuels ME (2014) Hajdu-Cheney syndrome: phenotypical progression with de-novo NOTCH2 mutation. Clin Dysmorphol 23:88–94PubMed Descartes M, Rojnueangnit K, Cole L, Sutton A, Morgan SL, Patry L, Samuels ME (2014) Hajdu-Cheney syndrome: phenotypical progression with de-novo NOTCH2 mutation. Clin Dysmorphol 23:88–94PubMed
53.
go back to reference Hajdu N, Kauntze R (1948) Cranio-skeletal dysplasia. Br J Radiol 21:42–48PubMed Hajdu N, Kauntze R (1948) Cranio-skeletal dysplasia. Br J Radiol 21:42–48PubMed
54.
go back to reference Sargin G, Cildag S, Senturk T (2013) Hajdu-Cheney syndrome with ventricular septal defect. Kaohsiung J Med Sci 29:343–344PubMed Sargin G, Cildag S, Senturk T (2013) Hajdu-Cheney syndrome with ventricular septal defect. Kaohsiung J Med Sci 29:343–344PubMed
55.
go back to reference Sakka S, Gafni RI, Davies JH, Clarke B, Tebben P, Samuels M, Saraff V, Klaushofer K, Fratzl-Zelman N, Roschger P, Rauch F, Högler W (2017) Bone structural characteristics and response to bisphosphonate treatment in children with Hajdu-Cheney syndrome. J Clin Endocrinol Metab 102:4163–4172PubMedPubMedCentral Sakka S, Gafni RI, Davies JH, Clarke B, Tebben P, Samuels M, Saraff V, Klaushofer K, Fratzl-Zelman N, Roschger P, Rauch F, Högler W (2017) Bone structural characteristics and response to bisphosphonate treatment in children with Hajdu-Cheney syndrome. J Clin Endocrinol Metab 102:4163–4172PubMedPubMedCentral
56.
go back to reference Vollersen N, Hermans-Borgmeyer I, Cornils K, Fehse B, Rolvien T, Triviai I, Jeschke A, Oheim R, Amling M, Schinke T, Yorgan TA (2018) High bone turnover in mice carrying a pathogenic Notch2 mutation causing Hajdu-Cheney syndrome. J Bone Miner Res 33:70–83PubMed Vollersen N, Hermans-Borgmeyer I, Cornils K, Fehse B, Rolvien T, Triviai I, Jeschke A, Oheim R, Amling M, Schinke T, Yorgan TA (2018) High bone turnover in mice carrying a pathogenic Notch2 mutation causing Hajdu-Cheney syndrome. J Bone Miner Res 33:70–83PubMed
57.
go back to reference Zanotti S, Yu J, Bridgewater D, Wolf JM, Canalis E (2018) Mice harboring a Hajdu Cheney syndrome mutation are sensitized to osteoarthritis. Bone 114:198–205PubMedPubMedCentral Zanotti S, Yu J, Bridgewater D, Wolf JM, Canalis E (2018) Mice harboring a Hajdu Cheney syndrome mutation are sensitized to osteoarthritis. Bone 114:198–205PubMedPubMedCentral
58.
go back to reference Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N (2012) Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol 37:283–289PubMed Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N (2012) Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol 37:283–289PubMed
59.
go back to reference McKiernan FE (2008) Integrated anti-remodeling and anabolic therapy for the osteoporosis of Hajdu-Cheney syndrome: 2-year follow-up. Osteoporos Int 19:379–380PubMed McKiernan FE (2008) Integrated anti-remodeling and anabolic therapy for the osteoporosis of Hajdu-Cheney syndrome: 2-year follow-up. Osteoporos Int 19:379–380PubMed
60.
go back to reference Adami G, Rossini M, Gatti D, Orsolini G, Idolazzi L, Viapiana O, Scarpa A, Canalis E (2016) Hajdu Cheney syndrome; report of a novel NOTCH2 mutation and treatment with denosumab. Bone 92:150–156PubMed Adami G, Rossini M, Gatti D, Orsolini G, Idolazzi L, Viapiana O, Scarpa A, Canalis E (2016) Hajdu Cheney syndrome; report of a novel NOTCH2 mutation and treatment with denosumab. Bone 92:150–156PubMed
61.
go back to reference Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, Donehower LA, Lee B (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18:1464–1470PubMedPubMedCentral Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, Donehower LA, Lee B (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18:1464–1470PubMedPubMedCentral
62.
go back to reference Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH (2014) Notch activation as a driver of osteogenic sarcoma. Cancer Cell 26:390–401PubMedPubMedCentral Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH (2014) Notch activation as a driver of osteogenic sarcoma. Cancer Cell 26:390–401PubMedPubMedCentral
63.
go back to reference Canalis E, Sanjay A, Yu J, Zanotti S (2017) An antibody to Notch2 reverses the osteopenic phenotype of Hajdu-Cheney mutant male mice. Endocrinology 158:730–742PubMedPubMedCentral Canalis E, Sanjay A, Yu J, Zanotti S (2017) An antibody to Notch2 reverses the osteopenic phenotype of Hajdu-Cheney mutant male mice. Endocrinology 158:730–742PubMedPubMedCentral
64.
go back to reference Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, Schahin-Reed D, Dow GJ, Shelton A, Stawicki S, Watts RJ, Zhang J, Choy R, Howard P, Kadyk L, Yan M, Zha J, Callahan CA, Hymowitz SG, Siebel CW (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464:1052–1057PubMed Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, Schahin-Reed D, Dow GJ, Shelton A, Stawicki S, Watts RJ, Zhang J, Choy R, Howard P, Kadyk L, Yan M, Zha J, Callahan CA, Hymowitz SG, Siebel CW (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464:1052–1057PubMed
65.
go back to reference Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, Miranda RN, Bahler DW, Medeiros LJ, Lim MS, Elenitoba-Johnson KSJ (2012) Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med 209:1553–1565PubMedPubMedCentral Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, Miranda RN, Bahler DW, Medeiros LJ, Lim MS, Elenitoba-Johnson KSJ (2012) Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med 209:1553–1565PubMedPubMedCentral
66.
go back to reference Yu J, Zanotti S, Schilling L, Schoenherr C, Economides AN, Sanjay A, Canalis E (2018) Induction of the Hajdu-Cheney syndrome mutation in CD19 B cells in mice alters B-cell allocation but not skeletal homeostasis. Am J Pathol 188:1430–1446PubMedPubMedCentral Yu J, Zanotti S, Schilling L, Schoenherr C, Economides AN, Sanjay A, Canalis E (2018) Induction of the Hajdu-Cheney syndrome mutation in CD19 B cells in mice alters B-cell allocation but not skeletal homeostasis. Am J Pathol 188:1430–1446PubMedPubMedCentral
67.
go back to reference Yu J, Zanotti S, Walia B, Jellison E, Sanjay A, Canalis E (2018) The Hajdu Cheney mutation is a determinant of B-cell allocation of the splenic marginal zone. Am J Pathol 188:149–159PubMedPubMedCentral Yu J, Zanotti S, Walia B, Jellison E, Sanjay A, Canalis E (2018) The Hajdu Cheney mutation is a determinant of B-cell allocation of the splenic marginal zone. Am J Pathol 188:149–159PubMedPubMedCentral
68.
go back to reference Gripp KW, Scott CI Jr, Hughes HE et al (1997) Lateral meningocele syndrome: three new patients and review of the literature. Am J Med Genet 70:229–239PubMed Gripp KW, Scott CI Jr, Hughes HE et al (1997) Lateral meningocele syndrome: three new patients and review of the literature. Am J Med Genet 70:229–239PubMed
69.
go back to reference Gripp KW (2011) Lateral meningocele syndrome and Hajdu-Cheney syndrome: different disorders with overlapping phenotypes. Am J Med Genet A 155A:1773–1774 author reply 1775PubMed Gripp KW (2011) Lateral meningocele syndrome and Hajdu-Cheney syndrome: different disorders with overlapping phenotypes. Am J Med Genet A 155A:1773–1774 author reply 1775PubMed
70.
go back to reference Snape KM, Ruddy D, Zenker M, Wuyts W, Whiteford M, Johnson D, Lam W, Trembath RC (2009) The spectra of clinical phenotypes in aplasia cutis congenita and terminal transverse limb defects. Am J Med Genet A 149A:1860–1881PubMed Snape KM, Ruddy D, Zenker M, Wuyts W, Whiteford M, Johnson D, Lam W, Trembath RC (2009) The spectra of clinical phenotypes in aplasia cutis congenita and terminal transverse limb defects. Am J Med Genet A 149A:1860–1881PubMed
71.
go back to reference Hoyme HE, Jones KL, Van Allen MI, Saunders BS, Benirschke K (1982) Vascular pathogenesis of transverse limb reduction defects. J Pediatr 101:839–843PubMed Hoyme HE, Jones KL, Van Allen MI, Saunders BS, Benirschke K (1982) Vascular pathogenesis of transverse limb reduction defects. J Pediatr 101:839–843PubMed
72.
go back to reference Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP (1987) Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 110:195–200PubMed Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP (1987) Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 110:195–200PubMed
73.
go back to reference Morrissette JD, Colliton RP, Spinner NB (2001) Defective intracellular transport and processing of JAG1 missense mutations in Alagille syndrome. Hum Mol Genet 10:405–413PubMed Morrissette JD, Colliton RP, Spinner NB (2001) Defective intracellular transport and processing of JAG1 missense mutations in Alagille syndrome. Hum Mol Genet 10:405–413PubMed
74.
go back to reference Boyer-Di Ponio J, Wright-Crosnier C, Groyer-Picard MT, Driancourt C, Beau I, Hadchouel M, Meunier-Rotival M (2007) Biological function of mutant forms of JAGGED1 proteins in Alagille syndrome: inhibitory effect on Notch signaling. Hum Mol Genet 16:2683–2692PubMed Boyer-Di Ponio J, Wright-Crosnier C, Groyer-Picard MT, Driancourt C, Beau I, Hadchouel M, Meunier-Rotival M (2007) Biological function of mutant forms of JAGGED1 proteins in Alagille syndrome: inhibitory effect on Notch signaling. Hum Mol Genet 16:2683–2692PubMed
75.
go back to reference Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730PubMed Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730PubMed
76.
go back to reference McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R, Gridley T (2001) Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128:491–502PubMed McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R, Gridley T (2001) Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128:491–502PubMed
77.
go back to reference Turnpenny PD, Whittock N, Duncan J, Dunwoodie S, Kusumi K, Ellard S (2003) Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet 40:333–339PubMedPubMedCentral Turnpenny PD, Whittock N, Duncan J, Dunwoodie S, Kusumi K, Ellard S (2003) Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet 40:333–339PubMedPubMedCentral
78.
go back to reference Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN, Lander ES (1998) The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 19:274–278PubMed Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN, Lander ES (1998) The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 19:274–278PubMed
79.
go back to reference Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11:1827–1839PubMed Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11:1827–1839PubMed
80.
go back to reference Kung AW, Xiao SM, Cherny S et al (2010) Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet 86:229–239PubMedPubMedCentral Kung AW, Xiao SM, Cherny S et al (2010) Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet 86:229–239PubMedPubMedCentral
81.
go back to reference Dishowitz MI, Terkhorn SP, Bostic SA, Hankenson KD (2012) Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration. J Orthop Res 30:296–303PubMed Dishowitz MI, Terkhorn SP, Bostic SA, Hankenson KD (2012) Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration. J Orthop Res 30:296–303PubMed
82.
go back to reference Wang C, Shen J, Yukata K, Inzana JA, O'Keefe RJ, Awad HA, Hilton MJ (2015) Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone 73:77–89PubMed Wang C, Shen J, Yukata K, Inzana JA, O'Keefe RJ, Awad HA, Hilton MJ (2015) Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone 73:77–89PubMed
83.
go back to reference Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O'Keefe RJ, Awad HA, Hilton MJ (2016) NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest 126:1471–1481PubMedPubMedCentral Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O'Keefe RJ, Awad HA, Hilton MJ (2016) NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest 126:1471–1481PubMedPubMedCentral
84.
go back to reference Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344PubMedPubMedCentral Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344PubMedPubMedCentral
85.
go back to reference Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507:376–380PubMedPubMedCentral Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507:376–380PubMedPubMedCentral
86.
go back to reference Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J, Hankenson KD (2013) Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One 8:e68726PubMedPubMedCentral Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J, Hankenson KD (2013) Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One 8:e68726PubMedPubMedCentral
87.
go back to reference Tanaka M, Setoguchi T, Hirotsu M, Gao H, Sasaki H, Matsunoshita Y, Komiya S (2009) Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100:1957–1965PubMedPubMedCentral Tanaka M, Setoguchi T, Hirotsu M, Gao H, Sasaki H, Matsunoshita Y, Komiya S (2009) Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100:1957–1965PubMedPubMedCentral
88.
go back to reference Dailey DD, Anfinsen KP, Pfaff LE, Ehrhart EJ, Charles JB, Bonsdorff TB, Thamm DH, Powers BE, Jonasdottir TJ, Duval DL (2013) HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors. BMC Vet Res 9:130PubMedPubMedCentral Dailey DD, Anfinsen KP, Pfaff LE, Ehrhart EJ, Charles JB, Bonsdorff TB, Thamm DH, Powers BE, Jonasdottir TJ, Duval DL (2013) HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors. BMC Vet Res 9:130PubMedPubMedCentral
89.
go back to reference Hughes DP (2009) How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res 152:479–496PubMed Hughes DP (2009) How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res 152:479–496PubMed
90.
go back to reference Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P, Hauschka PV (2010) Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol 177:1459–1469PubMedPubMedCentral Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P, Hauschka PV (2010) Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol 177:1459–1469PubMedPubMedCentral
91.
go back to reference Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205PubMedPubMedCentral Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205PubMedPubMedCentral
92.
go back to reference Zayzafoon M, Abdulkadir SA, McDonald JM (2004) Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem 279:3662–3670PubMed Zayzafoon M, Abdulkadir SA, McDonald JM (2004) Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem 279:3662–3670PubMed
93.
94.
go back to reference De Strooper B, Annaert W, Cupers P et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522PubMed De Strooper B, Annaert W, Cupers P et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522PubMed
95.
go back to reference Ilagan MX, Kopan R (2013) Selective blockade of transport via SERCA inhibition: the answer for oncogenic forms of Notch? Cancer Cell 23:267–269PubMed Ilagan MX, Kopan R (2013) Selective blockade of transport via SERCA inhibition: the answer for oncogenic forms of Notch? Cancer Cell 23:267–269PubMed
96.
go back to reference Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188PubMedPubMedCentral Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188PubMedPubMedCentral
97.
go back to reference Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, Scoggin S, Fu T, Vien L, Histen G, Zheng J, Martin-Hollister R, Duensing T, Singh S, Blacklow SC, Yao Z, Aster JC, Zhou BBS (2008) Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem 283:8046–8054PubMed Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, Scoggin S, Fu T, Vien L, Histen G, Zheng J, Martin-Hollister R, Duensing T, Singh S, Blacklow SC, Yao Z, Aster JC, Zhou BBS (2008) Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem 283:8046–8054PubMed
98.
go back to reference Zanotti S, Canalis E (2010) Notch and the skeleton. Mol Cell Biol 30:886–896PubMed Zanotti S, Canalis E (2010) Notch and the skeleton. Mol Cell Biol 30:886–896PubMed
99.
go back to reference Aste-Amezaga M, Zhang N, Lineberger JE et al (2010) Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One 5:e9094PubMedPubMedCentral Aste-Amezaga M, Zhang N, Lineberger JE et al (2010) Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One 5:e9094PubMedPubMedCentral
100.
go back to reference Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K, Plowman GD (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463:E6–E7PubMed Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K, Plowman GD (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463:E6–E7PubMed
Metadata
Title
Notch in skeletal physiology and disease
Author
E. Canalis
Publication date
01-12-2018
Publisher
Springer London
Published in
Osteoporosis International / Issue 12/2018
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-018-4694-3

Other articles of this Issue 12/2018

Osteoporosis International 12/2018 Go to the issue