Skip to main content
Top
Published in: Osteoporosis International 12/2018

Open Access 01-12-2018 | Original Article

Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements

Authors: N. Sollmann, K. Mei, B.J. Schwaiger, A.S. Gersing, F.K. Kopp, R. Bippus, C. Maegerlein, C. Zimmer, E.J. Rummeny, J.S. Kirschke, P.B. Noël, T. Baum

Published in: Osteoporosis International | Issue 12/2018

Login to get access

Abstract

Summary

This study investigates the impact of tube current reduction and sparse sampling on femoral bone mineral density (BMD) measurements derived from multi-detector computed tomography (MDCT). The application of sparse sampling led to robust and clinically acceptable BMD measurements. In contrast, BMD measurements derived from MDCT with virtually reduced tube currents showed a considerable increase when compared to original data.

Introduction

The study aims to evaluate the effects of radiation dose reduction by using virtual reduction of tube current or sparse sampling combined with standard filtered back projection (FBP) and statistical iterative reconstruction (SIR) on femoral bone mineral density (BMD) measurements derived from multi-detector computed tomography (MDCT).

Methods

In routine MDCT scans of 41 subjects (65.9% men; age 69.3 ± 10.1 years), reduced radiation doses were simulated by lowering tube currents and applying sparse sampling (50, 25, and 10% of the original tube current and projections, respectively). Images were reconstructed using FBP and SIR. BMD values were assessed in the femoral neck and compared between the different dose levels, numbers of projections, and image reconstruction approaches.

Results

Compared to full-dose MDCT, virtual lowering of the tube current by applying our simulation algorithm resulted in increases in BMD values for both FBP (up to a relative change of 32.5%) and SIR (up to a relative change of 32.3%). In contrast, the application of sparse sampling with a reduction down to 10% of projections showed robust BMD values, with clinically acceptable relative changes of up to 0.5% (FBP) and 0.7% (SIR).

Conclusions

Our simulations, which still require clinical validation, indicate that reductions down to ultra-low tube currents have a significant impact on MDCT-based femoral BMD measurements. In contrast, the application of sparse-sampled MDCT seems a promising future clinical option that may enable a significant reduction of the radiation dose without considerable changes of BMD values.
Literature
1.
go back to reference NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. Jama 285:785–795CrossRef NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. Jama 285:785–795CrossRef
2.
go back to reference Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EH (2016) Quantitative imaging methods in osteoporosis. Quant Imaging Med Surg 6:680–698CrossRef Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EH (2016) Quantitative imaging methods in osteoporosis. Quant Imaging Med Surg 6:680–698CrossRef
3.
go back to reference El Maghraoui A, Roux C (2008) DXA scanning in clinical practice. QJM 101:605–617CrossRef El Maghraoui A, Roux C (2008) DXA scanning in clinical practice. QJM 101:605–617CrossRef
4.
go back to reference Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM, Jankowski LG, Lee JK, Leslie WD, International Society for Clinical Densitometry (2016) Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19:127–140CrossRef Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM, Jankowski LG, Lee JK, Leslie WD, International Society for Clinical Densitometry (2016) Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19:127–140CrossRef
5.
go back to reference Lewiecki EM, Binkley N, Bilezikian JP, Kendler DL, Leib ES, Petak SM (2006) Official positions of the International Society for Clinical Densitometry. Osteoporos Int 17:1700–1701CrossRef Lewiecki EM, Binkley N, Bilezikian JP, Kendler DL, Leib ES, Petak SM (2006) Official positions of the International Society for Clinical Densitometry. Osteoporos Int 17:1700–1701CrossRef
6.
go back to reference Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202CrossRef Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202CrossRef
7.
go back to reference Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112CrossRef Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112CrossRef
8.
go back to reference Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71:415–424CrossRef Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71:415–424CrossRef
9.
go back to reference Gruber M, Bauer JS, Dobritz M, Beer AJ, Wolf P, Woertler K, Rummeny EJ, Baum T (2013) Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry. Eur Radiol 23:505–512CrossRef Gruber M, Bauer JS, Dobritz M, Beer AJ, Wolf P, Woertler K, Rummeny EJ, Baum T (2013) Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry. Eur Radiol 23:505–512CrossRef
10.
go back to reference Bauer JS, Henning TD, Mueller D, Lu Y, Majumdar S, Link TM (2007) Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. AJR Am J Roentgenol 188:1294–1301CrossRef Bauer JS, Henning TD, Mueller D, Lu Y, Majumdar S, Link TM (2007) Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. AJR Am J Roentgenol 188:1294–1301CrossRef
11.
go back to reference Baum T, Muller D, Dobritz M, Rummeny EJ, Link TM, Bauer JS (2011) BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software. Eur J Radiol 80:e140–e145CrossRef Baum T, Muller D, Dobritz M, Rummeny EJ, Link TM, Bauer JS (2011) BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software. Eur J Radiol 80:e140–e145CrossRef
12.
go back to reference Baum T, Karampinos DC, Liebl H, Rummeny EJ, Waldt S, Bauer JS (2013) High-resolution bone imaging for osteoporosis diagnostics and therapy monitoring using clinical MDCT and MRI. Curr Med Chem 20:4844–4852CrossRef Baum T, Karampinos DC, Liebl H, Rummeny EJ, Waldt S, Bauer JS (2013) High-resolution bone imaging for osteoporosis diagnostics and therapy monitoring using clinical MDCT and MRI. Curr Med Chem 20:4844–4852CrossRef
13.
go back to reference Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F, Rummeny EJ, Kirschke JS, Noël PB, Baum T (2017) Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol 27:5261–5271CrossRef Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F, Rummeny EJ, Kirschke JS, Noël PB, Baum T (2017) Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol 27:5261–5271CrossRef
14.
go back to reference Yi JW, Park HJ, Lee SY, Rho MH, Hong HP, Choi YJ, Kim MS (2017) Radiation dose reduction in multidetector CT in fracture evaluation. Br J Radiol 90:20170240CrossRef Yi JW, Park HJ, Lee SY, Rho MH, Hong HP, Choi YJ, Kim MS (2017) Radiation dose reduction in multidetector CT in fracture evaluation. Br J Radiol 90:20170240CrossRef
15.
go back to reference Abbas S, Lee T, Shin S, Lee R, Cho S (2013) Effects of sparse sampling schemes on image quality in low-dose CT. Med Phys 40:111915CrossRef Abbas S, Lee T, Shin S, Lee R, Cho S (2013) Effects of sparse sampling schemes on image quality in low-dose CT. Med Phys 40:111915CrossRef
16.
go back to reference Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108CrossRef Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108CrossRef
17.
go back to reference Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, Schilham AM (2013) Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol 23:1623–1631CrossRef Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, Schilham AM (2013) Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol 23:1623–1631CrossRef
18.
go back to reference Willemink MJ, Leiner T, de Jong PA, de Heer LM, Nievelstein RA, Schilham AM, Budde RP (2013) Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol 23:1632–1642CrossRef Willemink MJ, Leiner T, de Jong PA, de Heer LM, Nievelstein RA, Schilham AM, Budde RP (2013) Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol 23:1632–1642CrossRef
19.
go back to reference Noel PB, Fingerle AA, Renger B, Munzel D, Rummeny EJ, Dobritz M (2011) Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol 197:1404–1409CrossRef Noel PB, Fingerle AA, Renger B, Munzel D, Rummeny EJ, Dobritz M (2011) Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol 197:1404–1409CrossRef
20.
go back to reference Noel PB, Renger B, Fiebich M, Munzel D, Fingerle AA, Rummeny EJ, Dobritz M (2013) Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations. PLoS One 8:e81141CrossRef Noel PB, Renger B, Fiebich M, Munzel D, Fingerle AA, Rummeny EJ, Dobritz M (2013) Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations. PLoS One 8:e81141CrossRef
21.
go back to reference Sidky EY, Kao CM, Pan X (2006) Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J Xray Sci Technol 14:119–139 Sidky EY, Kao CM, Pan X (2006) Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J Xray Sci Technol 14:119–139
22.
go back to reference Zhao Z, Gang GJ, Siewerdsen JH (2014) Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector. Med Phys 41:061909CrossRef Zhao Z, Gang GJ, Siewerdsen JH (2014) Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector. Med Phys 41:061909CrossRef
23.
go back to reference Zabic S, Wang Q, Morton T, Brown KM (2013) A low dose simulation tool for CT systems with energy integrating detectors. Med Phys 40:031102CrossRef Zabic S, Wang Q, Morton T, Brown KM (2013) A low dose simulation tool for CT systems with energy integrating detectors. Med Phys 40:031102CrossRef
24.
go back to reference Muenzel D, Koehler T, Brown K, Žabić S, Fingerle AA, Waldt S, Bendik E, Zahel T, Schneider A, Dobritz M, Rummeny EJ, Noël PB (2014) Validation of a low dose simulation technique for computed tomography images. PLoS One 9:e107843CrossRef Muenzel D, Koehler T, Brown K, Žabić S, Fingerle AA, Waldt S, Bendik E, Zahel T, Schneider A, Dobritz M, Rummeny EJ, Noël PB (2014) Validation of a low dose simulation technique for computed tomography images. PLoS One 9:e107843CrossRef
25.
go back to reference Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci U S A 68:2236–2240CrossRef Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci U S A 68:2236–2240CrossRef
26.
go back to reference Fessler JA (2000) Statistical image reconstruction methods for transmission tomography. In Fitzpatrick JM, Sonka M (eds) handbook of medical imaging, volume 2 medical image processing and analysis. SPIE publications, pp 1-70 Fessler JA (2000) Statistical image reconstruction methods for transmission tomography. In Fitzpatrick JM, Sonka M (eds) handbook of medical imaging, volume 2 medical image processing and analysis. SPIE publications, pp 1-70
27.
go back to reference Fehringer A, Lasser T, Zanette I, Noel PB, Pfeiffer F (2014) A versatile tomographic forward- and back-projection approach on multi-GPUs. Proc SPIE 9034, medical imaging 2014: image processing, 90344F (21 march 2014) Fehringer A, Lasser T, Zanette I, Noel PB, Pfeiffer F (2014) A versatile tomographic forward- and back-projection approach on multi-GPUs. Proc SPIE 9034, medical imaging 2014: image processing, 90344F (21 march 2014)
28.
go back to reference Kim D, Ramani S, Fessler JA (2015) Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction. IEEE Trans Med Imaging 34:167–178CrossRef Kim D, Ramani S, Fessler JA (2015) Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction. IEEE Trans Med Imaging 34:167–178CrossRef
29.
go back to reference Lange K (1990) Convergence of EM image reconstruction algorithms with Gibbs smoothing. IEEE Trans Med Imaging 9:439–446CrossRef Lange K (1990) Convergence of EM image reconstruction algorithms with Gibbs smoothing. IEEE Trans Med Imaging 9:439–446CrossRef
30.
go back to reference Huber PJ (1964) Robust estimation of a location parameter. Ann Math Statist 35:73–101CrossRef Huber PJ (1964) Robust estimation of a location parameter. Ann Math Statist 35:73–101CrossRef
31.
go back to reference Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRef Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRef
32.
go back to reference Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529CrossRef Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529CrossRef
33.
go back to reference Fingerle AA, Noel PB (2018) Dose reduction in abdominal CT: the road to submillisievert imaging. Eur Radiol 28:2743–2744CrossRef Fingerle AA, Noel PB (2018) Dose reduction in abdominal CT: the road to submillisievert imaging. Eur Radiol 28:2743–2744CrossRef
34.
go back to reference Duan X, Wang J, Leng S, Schmidt B, Allmendinger T, Grant K, Flohr T, McCollough CH (2013) Electronic noise in CT detectors: impact on image noise and artifacts. AJR Am J Roentgenol 201:W626–W632CrossRef Duan X, Wang J, Leng S, Schmidt B, Allmendinger T, Grant K, Flohr T, McCollough CH (2013) Electronic noise in CT detectors: impact on image noise and artifacts. AJR Am J Roentgenol 201:W626–W632CrossRef
35.
go back to reference Yamamoto DS, Viale PH (2009) Update on identifying and managing osteoporosis in women with breast cancer. Clin J Oncol Nurs 13:E18–E29CrossRef Yamamoto DS, Viale PH (2009) Update on identifying and managing osteoporosis in women with breast cancer. Clin J Oncol Nurs 13:E18–E29CrossRef
36.
go back to reference Gralow JR, Biermann JS, Farooki A, et al. (2013) NCCN task force report: bone health in Cancer care. J Natl Compr Canc Netw 11 Suppl 3:S1-50; quiz S51CrossRef Gralow JR, Biermann JS, Farooki A, et al. (2013) NCCN task force report: bone health in Cancer care. J Natl Compr Canc Netw 11 Suppl 3:S1-50; quiz S51CrossRef
37.
go back to reference Gralow JR, Biermann JS, Farooki A, et al. (2009) NCCN task force report: bone health in Cancer care. J Natl Compr Canc Netw 7 Suppl 3:S1-32; quiz S33-35CrossRef Gralow JR, Biermann JS, Farooki A, et al. (2009) NCCN task force report: bone health in Cancer care. J Natl Compr Canc Netw 7 Suppl 3:S1-32; quiz S33-35CrossRef
38.
go back to reference Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologist 11:1121–1131CrossRef Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologist 11:1121–1131CrossRef
Metadata
Title
Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements
Authors
N. Sollmann
K. Mei
B.J. Schwaiger
A.S. Gersing
F.K. Kopp
R. Bippus
C. Maegerlein
C. Zimmer
E.J. Rummeny
J.S. Kirschke
P.B. Noël
T. Baum
Publication date
01-12-2018
Publisher
Springer London
Published in
Osteoporosis International / Issue 12/2018
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-018-4675-6

Other articles of this Issue 12/2018

Osteoporosis International 12/2018 Go to the issue