Skip to main content
Top
Published in: Osteoporosis International 1/2018

01-01-2018 | Original Article

High dairy protein intake is associated with greater bone strength parameters at the distal radius and tibia in older men: a cross-sectional study

Authors: L. Langsetmo, J. M. Shikany, A. J. Burghardt, P. M. Cawthon, E. S. Orwoll, J. A. Cauley, B. C. Taylor, J. T. Schousboe, D. C. Bauer, T. N. Vo, K. E. Ensrud, for the Osteoporotic Fractures in Men (MrOS) Study Research Group

Published in: Osteoporosis International | Issue 1/2018

Login to get access

Abstract

Summary

Dairy protein but not plant protein was associated with bone strength of the radius and tibia in older men. These results are consistent with previous results in women and support similar findings related to fracture outcomes. Bone strength differences were largely due to thickness and area of the bone cortex.

Introduction

Our objective was to determine the association of protein intake by source (dairy, non-dairy animal, plant) with bone strength and bone microarchitecture among older men.

Methods

We used data from 1016 men (mean 84.3 years) who attended the Year 14 exam of the Osteoporotic Fractures in Men (MrOS) study, completed a food frequency questionnaire (500–5000 kcal/day), were not taking androgen or androgen agonists, and had high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and distal or diaphyseal tibia. Protein was expressed as percentage of total energy intake (TEI); mean ± SD for TEI = 1548 ± 607 kcal/day and for total protein = 16.2 ± 2.9%TEI. We used linear regression with standardized HR-pQCT parameters as dependent variables and adjusted for age, limb length, center, education, race/ethnicity, marital status, smoking, alcohol intake, physical activity level, corticosteroids use, supplement use (calcium and vitamin D), and osteoporosis medications.

Results

Higher dairy protein intake was associated with higher estimated failure load at the distal radius and distal tibia [radius effect size = 0.17 (95% CI 0.07, 0.27), tibia effect size = 0.13 (95% CI 0.03, 0.23)], while higher non-dairy animal protein was associated with higher failure load at only the distal radius. Plant protein intake was not associated with failure load at any site.

Conclusion

The association between protein intake and bone strength varied by source of protein. These results support a link between dairy protein intake and skeletal health, but an intervention study is needed to evaluate causality.
Literature
1.
go back to reference Gaffney-Stomberg E, Cao JJ, Lin GG, Wulff CR, Murphy NE, Young AJ, McClung JP, Pasiakos SM (2014) Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats. J Nutr 144:821–829CrossRefPubMed Gaffney-Stomberg E, Cao JJ, Lin GG, Wulff CR, Murphy NE, Young AJ, McClung JP, Pasiakos SM (2014) Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats. J Nutr 144:821–829CrossRefPubMed
2.
go back to reference Langsetmo L, Shikany JM, Cawthon PM, Cauley JA, Taylor BC, Vo TN, Bauer DC, Orwoll ES, Schousboe JT, Ensrud KE (2017) The association between protein intake by source and osteoporotic fracture in older men: a prospective cohort study. J Bone Miner Res 32:592–600CrossRefPubMed Langsetmo L, Shikany JM, Cawthon PM, Cauley JA, Taylor BC, Vo TN, Bauer DC, Orwoll ES, Schousboe JT, Ensrud KE (2017) The association between protein intake by source and osteoporotic fracture in older men: a prospective cohort study. J Bone Miner Res 32:592–600CrossRefPubMed
3.
go back to reference Blank JB, Cawthon PM, Carrion-Petersen ML, Harper L, Johnson JP, Mitson E, Delay RR (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26:557–568CrossRefPubMed Blank JB, Cawthon PM, Carrion-Petersen ML, Harper L, Johnson JP, Mitson E, Delay RR (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26:557–568CrossRefPubMed
4.
go back to reference Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K, Lewis C, Cawthon PM, Marcus R, Marshall LM, McGowan J, Phipps K, Sherman S, Stefanick ML, Stone K (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—a large observational study of the determinants of fracture in older men. Contemp Clin Trials 26:569–585CrossRefPubMed Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K, Lewis C, Cawthon PM, Marcus R, Marshall LM, McGowan J, Phipps K, Sherman S, Stefanick ML, Stone K (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—a large observational study of the determinants of fracture in older men. Contemp Clin Trials 26:569–585CrossRefPubMed
5.
go back to reference Burghardt AJ, Pialat JB, Kazakia GJ, Boutroy S, Engelke K, Patsch JM, Valentinitsch A, Liu D, Szabo E, Bogado CE, Zanchetta MB, McKay HA, Shane E, Boyd SK, Bouxsein ML, Chapurlat R, Khosla S, Majumdar S (2013) Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J Bone Miner Res 28:524–536CrossRefPubMedPubMedCentral Burghardt AJ, Pialat JB, Kazakia GJ, Boutroy S, Engelke K, Patsch JM, Valentinitsch A, Liu D, Szabo E, Bogado CE, Zanchetta MB, McKay HA, Shane E, Boyd SK, Bouxsein ML, Chapurlat R, Khosla S, Majumdar S (2013) Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J Bone Miner Res 28:524–536CrossRefPubMedPubMedCentral
6.
go back to reference Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50:111–118CrossRefPubMed Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50:111–118CrossRefPubMed
7.
go back to reference Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47:519–528CrossRefPubMedPubMedCentral Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47:519–528CrossRefPubMedPubMedCentral
8.
go back to reference Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174CrossRefPubMed Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174CrossRefPubMed
9.
go back to reference Manske SL, Zhu Y, Sandino C, Boyd SK (2015) Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 79:213–221CrossRefPubMed Manske SL, Zhu Y, Sandino C, Boyd SK (2015) Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 79:213–221CrossRefPubMed
10.
go back to reference Mueller TL, Christen D, Sandercott S, Boyd SK, van RB, Eckstein F, Lochmuller EM, Muller R, van Lenthe GH (2011) Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population. Bone 48:1232–1238CrossRefPubMed Mueller TL, Christen D, Sandercott S, Boyd SK, van RB, Eckstein F, Lochmuller EM, Muller R, van Lenthe GH (2011) Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population. Bone 48:1232–1238CrossRefPubMed
11.
go back to reference Washburn RA, Smith KW, Jette AM, Janney CA (1993) The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 46:153–162CrossRefPubMed Washburn RA, Smith KW, Jette AM, Janney CA (1993) The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 46:153–162CrossRefPubMed
12.
go back to reference Pahor M, Chrischilles EA, Guralnik JM, Brown SL, Wallace RB, Carbonin P (1994) Drug data coding and analysis in epidemiologic studies. Eur J Epidemiol 10:405–411CrossRefPubMed Pahor M, Chrischilles EA, Guralnik JM, Brown SL, Wallace RB, Carbonin P (1994) Drug data coding and analysis in epidemiologic studies. Eur J Epidemiol 10:405–411CrossRefPubMed
13.
go back to reference Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228SCrossRefPubMed Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228SCrossRefPubMed
14.
go back to reference Trumbo P, Schlicker S, Yates AA, Poos M (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102:1621–1630CrossRefPubMed Trumbo P, Schlicker S, Yates AA, Poos M (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102:1621–1630CrossRefPubMed
15.
go back to reference Langsetmo L, Barr SI, Berger C, Kreiger N, Rahme E, Adachi JD, Papaioannou A, Kaiser SM, Prior JC, Hanley DA, Kovacs CS, Josse RG, Goltzman D (2015) Associations of protein intake and protein source with bone mineral density and fracture risk: a population-based cohort study. J Nutr Health Aging 19:861–868CrossRefPubMedPubMedCentral Langsetmo L, Barr SI, Berger C, Kreiger N, Rahme E, Adachi JD, Papaioannou A, Kaiser SM, Prior JC, Hanley DA, Kovacs CS, Josse RG, Goltzman D (2015) Associations of protein intake and protein source with bone mineral density and fracture risk: a population-based cohort study. J Nutr Health Aging 19:861–868CrossRefPubMedPubMedCentral
16.
go back to reference Durosier-Izart C, Biver E, Merminod F, van RB, Chevalley T, Herrmann FR, Ferrari SL, Rizzoli R (2017) Peripheral skeleton bone strength is positively correlated with total and dairy protein intakes in healthy postmenopausal women. Am J Clin Nutr 105:513–525CrossRefPubMed Durosier-Izart C, Biver E, Merminod F, van RB, Chevalley T, Herrmann FR, Ferrari SL, Rizzoli R (2017) Peripheral skeleton bone strength is positively correlated with total and dairy protein intakes in healthy postmenopausal women. Am J Clin Nutr 105:513–525CrossRefPubMed
17.
go back to reference Burt LA, Liang Z, Sajobi TT, Hanley DA, Boyd SK (2016) Sex- and site-specific normative data curves for HR-pQCT. J Bone Miner Res 31:2041–2047CrossRefPubMed Burt LA, Liang Z, Sajobi TT, Hanley DA, Boyd SK (2016) Sex- and site-specific normative data curves for HR-pQCT. J Bone Miner Res 31:2041–2047CrossRefPubMed
18.
go back to reference Shanbhogue VV, Brixen K, Hansen S (2016) Age- and sex-related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT. J Bone Miner Res 31:1541–1549CrossRefPubMed Shanbhogue VV, Brixen K, Hansen S (2016) Age- and sex-related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT. J Bone Miner Res 31:1541–1549CrossRefPubMed
19.
go back to reference Burt LA, Hanley DA, Boyd SK (2017) Cross-sectional versus longitudinal change in a prospective HR-pQCT study. J Bone Miner Res Burt LA, Hanley DA, Boyd SK (2017) Cross-sectional versus longitudinal change in a prospective HR-pQCT study. J Bone Miner Res
20.
go back to reference Pasiakos SM, Agarwal S, Lieberman HR, Fulgoni VL, III. Sources and amounts of animal, dairy, and plant protein intake of US adults in 2007–2010. Nutrients 2015; 7: 7058–7069 Pasiakos SM, Agarwal S, Lieberman HR, Fulgoni VL, III. Sources and amounts of animal, dairy, and plant protein intake of US adults in 2007–2010. Nutrients 2015; 7: 7058–7069
21.
go back to reference Hunt JR, Johnson LK, Fariba Roughead ZK (2009) Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. Am J Clin Nutr 89:1357–1365CrossRefPubMed Hunt JR, Johnson LK, Fariba Roughead ZK (2009) Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. Am J Clin Nutr 89:1357–1365CrossRefPubMed
22.
go back to reference Dawson-Hughes B, Harris SS (2002) Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am J Clin Nutr 75:773–779PubMed Dawson-Hughes B, Harris SS (2002) Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am J Clin Nutr 75:773–779PubMed
23.
go back to reference Kerstetter JE, Bihuniak JD, Brindisi J, Sullivan RR, Mangano KM, Larocque S, Kotler BM, Simpson CA, Cusano AM, Gaffney-Stomberg E, Kleppinger A, Reynolds J, Dziura J, Kenny AM, Insogna KL (2015) The effect of a whey protein supplement on bone mass in older Caucasian adults. J Clin Endocrinol Metab 100:2214–2222CrossRefPubMedPubMedCentral Kerstetter JE, Bihuniak JD, Brindisi J, Sullivan RR, Mangano KM, Larocque S, Kotler BM, Simpson CA, Cusano AM, Gaffney-Stomberg E, Kleppinger A, Reynolds J, Dziura J, Kenny AM, Insogna KL (2015) The effect of a whey protein supplement on bone mass in older Caucasian adults. J Clin Endocrinol Metab 100:2214–2222CrossRefPubMedPubMedCentral
24.
go back to reference Zhu K, Meng X, Kerr DA, Devine A, Solah V, Binns CW, Prince RL (2011) The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J Bone Miner Res 26:2298–2306CrossRefPubMed Zhu K, Meng X, Kerr DA, Devine A, Solah V, Binns CW, Prince RL (2011) The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J Bone Miner Res 26:2298–2306CrossRefPubMed
25.
go back to reference Tirosh A, de Souza RJ, Sacks F, Bray GA, Smith SR, LeBoff MS (2015) Sex differences in the effects of weight loss diets on bone mineral density and body composition: POUNDS LOST trial. J Clin Endocrinol Metab 100:2463–2471CrossRefPubMedPubMedCentral Tirosh A, de Souza RJ, Sacks F, Bray GA, Smith SR, LeBoff MS (2015) Sex differences in the effects of weight loss diets on bone mineral density and body composition: POUNDS LOST trial. J Clin Endocrinol Metab 100:2463–2471CrossRefPubMedPubMedCentral
26.
go back to reference Jesudason D, Nordin BC, Keogh J, Clifton P (2013) Comparison of 2 weight-loss diets of different protein content on bone health: a randomized trial. Am J Clin Nutr 98:1343–1352CrossRefPubMed Jesudason D, Nordin BC, Keogh J, Clifton P (2013) Comparison of 2 weight-loss diets of different protein content on bone health: a randomized trial. Am J Clin Nutr 98:1343–1352CrossRefPubMed
27.
go back to reference Sukumar D, Ambia-Sobhan H, Zurfluh R, Schlussel Y, Stahl TJ, Gordon CL, Shapses SA (2011) Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res 26:1339–1348CrossRefPubMed Sukumar D, Ambia-Sobhan H, Zurfluh R, Schlussel Y, Stahl TJ, Gordon CL, Shapses SA (2011) Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res 26:1339–1348CrossRefPubMed
Metadata
Title
High dairy protein intake is associated with greater bone strength parameters at the distal radius and tibia in older men: a cross-sectional study
Authors
L. Langsetmo
J. M. Shikany
A. J. Burghardt
P. M. Cawthon
E. S. Orwoll
J. A. Cauley
B. C. Taylor
J. T. Schousboe
D. C. Bauer
T. N. Vo
K. E. Ensrud
for the Osteoporotic Fractures in Men (MrOS) Study Research Group
Publication date
01-01-2018
Publisher
Springer London
Published in
Osteoporosis International / Issue 1/2018
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-017-4261-3

Other articles of this Issue 1/2018

Osteoporosis International 1/2018 Go to the issue