Skip to main content
Top
Published in: Osteoporosis International 3/2016

01-03-2016 | Original Article

QCT of the proximal femur—which parameters should be measured to discriminate hip fracture?

Authors: O. Museyko, V. Bousson, J. Adams, J. -D. Laredo, K. Engelke

Published in: Osteoporosis International | Issue 3/2016

Login to get access

Abstract

Summary

For quantitative computed tomography (QCT), most relevant variables to discriminate hip fractures were determined. A multivariate analysis showed that trabecular bone mineral density (BMD) of the trochanter with “cortical” thickness of the neck provided better fracture discrimination than total hip integral BMD. A slice-by-slice analysis of the neck or the inclusion of strength-based parameters did not improve fracture discrimination.

Introduction

For QCT of the proximal femur, a large variety of analysis parameters describing bone mineral density, geometry, or strength has been considered. However, in each given study, generally just a small subset was used. The aim of this study was to start with a comprehensive set and then select a best subset of QCT parameters for discrimination of subjects with and without acute osteoporotic hip fractures.

Methods

The analysis was performed using the population of the European Femur Fracture (EFFECT) study (Bousson et al. J Bone Min Res: Off J Am Soc Bone Min Res 26:881-893, 2011). Fifty-six female control subjects (age 73.2 ± 9.3 years) were compared with 46 female patients (age 80.9 ± 11.1 years) with acute hip fractures. The QCT analysis software MIAF-Femur was used to virtually dissect the proximal femur and analyze more than 1000 parameters, predominantly in the femoral neck. A multivariate best-subset analysis was used to extract the parameters best discriminating hip fractures. All results were adjusted for age, height, and weight differences between the two groups.

Results

For the discrimination of all proximal hip fractures as well as for cervical fractures alone, the measurement of neck parameters suffices (area under the curve (AUC) = 0.84). Parameters characterizing bone strength are discriminators of hip fractures; however, in multivariate models, only “cortical” cross-sectional area in the neck center remained as a significant contributor. The combination of one BMD parameter, trabecular BMD of the trochanter, and one geometry parameter, “cortical” thickness of the neck discriminated hip fracture with an AUC value of 0.83 which was significantly better than 0.77 for total femur BMD alone. A comprehensive slice-based analysis of the neck along its axis did not significantly improve hip fracture discrimination.

Conclusions

If QCT of the hip is performed, the analysis should include neck and trochanter. In particular, for fractures of any type, a comprehensive slice-based analysis of the neck along its axis did not significantly improve hip fracture discrimination nor did the inclusion of strength-related parameters other than “cortical” area or thickness. One BMD and one geometry parameter, in this study, the combination of trabecular BMD of the trochanter and of “cortical” thickness of the neck resulted in significant hip fracture discrimination.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo JD (2011) In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J Bone Min Res: Off J Am Soc Bone Min Res 26(4):881–893. doi:10.1002/jbmr.270 CrossRef Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo JD (2011) In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J Bone Min Res: Off J Am Soc Bone Min Res 26(4):881–893. doi:10.​1002/​jbmr.​270 CrossRef
4.
go back to reference Kang Y, Engelke K, Kalender WA (2003) A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 22(5):586–598CrossRefPubMed Kang Y, Engelke K, Kalender WA (2003) A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 22(5):586–598CrossRefPubMed
5.
go back to reference Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21(1):101–108CrossRefPubMed Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21(1):101–108CrossRefPubMed
6.
go back to reference Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44(3):751–764CrossRefPubMed Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44(3):751–764CrossRefPubMed
8.
go back to reference Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30(1):1–8CrossRefPubMed Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30(1):1–8CrossRefPubMed
9.
go back to reference Kang Y, Engelke K, Fuchs C, Kalender WA (2005) An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph 29(7):533–541CrossRefPubMed Kang Y, Engelke K, Fuchs C, Kalender WA (2005) An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph 29(7):533–541CrossRefPubMed
10.
go back to reference Carpenter RD, Sigurdsson S, Zhao S, Lu Y, Eiriksdottir G, Sigurdsson G, Jonsson BY, Prevrhal S, Harris TB, Siggeirsdottir K, Guethnason V, Lang TF (2011) Effects of age and sex on the strength and cortical thickness of the femoral neck. Bone 48(4):741–747. doi:10.1016/j.bone.2010.12.004 CrossRefPubMed Carpenter RD, Sigurdsson S, Zhao S, Lu Y, Eiriksdottir G, Sigurdsson G, Jonsson BY, Prevrhal S, Harris TB, Siggeirsdottir K, Guethnason V, Lang TF (2011) Effects of age and sex on the strength and cortical thickness of the femoral neck. Bone 48(4):741–747. doi:10.​1016/​j.​bone.​2010.​12.​004 CrossRefPubMed
11.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845CrossRefPubMed
13.
go back to reference Schwarz G (1978) Estimation of the dimension of a model. Ann Stat 6:461–465CrossRef Schwarz G (1978) Estimation of the dimension of a model. Ann Stat 6:461–465CrossRef
14.
go back to reference Baudoin C, Fardellone P, Sebert JL (1993) Effect of sex and age on the ratio of cervical to trochanteric hip fracture. A meta-analysis of 16 reports on 36,451 cases. Acta Orthop Scand 64(6):647–653CrossRefPubMed Baudoin C, Fardellone P, Sebert JL (1993) Effect of sex and age on the ratio of cervical to trochanteric hip fracture. A meta-analysis of 16 reports on 36,451 cases. Acta Orthop Scand 64(6):647–653CrossRefPubMed
15.
go back to reference Kannus P, Parkkari J, Sievanen H, Heinonen A, Vuori I, Jarvinen M (1996) Epidemiology of hip fractures. Bone 18(1 Suppl):57S–63SCrossRefPubMed Kannus P, Parkkari J, Sievanen H, Heinonen A, Vuori I, Jarvinen M (1996) Epidemiology of hip fractures. Bone 18(1 Suppl):57S–63SCrossRefPubMed
18.
go back to reference Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES (2008) Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res 23(8):1326–1333CrossRefPubMedPubMedCentral Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES (2008) Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res 23(8):1326–1333CrossRefPubMedPubMedCentral
20.
go back to reference Johannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T, Mogensen B, Jonsson BY, Sigurdsson S, Harris TB, Gudnason VG, Sigurdsson G (2011) Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK study. Bone 48(6):1268–1276. doi:10.1016/j.bone.2011.03.776 CrossRefPubMedPubMedCentral Johannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T, Mogensen B, Jonsson BY, Sigurdsson S, Harris TB, Gudnason VG, Sigurdsson G (2011) Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK study. Bone 48(6):1268–1276. doi:10.​1016/​j.​bone.​2011.​03.​776 CrossRefPubMedPubMedCentral
21.
go back to reference Prevrhal S, Heitz M, Lowet G, Engelke K, Kalender WA (1997) Quantitative CT am proximalen Femur: In vitro-Studie. Z Med Phys 7:170–177CrossRef Prevrhal S, Heitz M, Lowet G, Engelke K, Kalender WA (1997) Quantitative CT am proximalen Femur: In vitro-Studie. Z Med Phys 7:170–177CrossRef
22.
go back to reference Yang L, Burton AC, Bradburn M, Nielson CM, Orwoll ES, Eastell R (2012) Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: the MrOS study. J Bone Miner Res 27(11):2314–2324. doi:10.1002/jbmr.1693 CrossRefPubMedPubMedCentral Yang L, Burton AC, Bradburn M, Nielson CM, Orwoll ES, Eastell R (2012) Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: the MrOS study. J Bone Miner Res 27(11):2314–2324. doi:10.​1002/​jbmr.​1693 CrossRefPubMedPubMedCentral
23.
go back to reference Yang L, Udall WJ, McCloskey EV, Eastell R (2014) Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos Int 25(1):251–263. doi:10.1007/s00198-013-2401-y CrossRefPubMed Yang L, Udall WJ, McCloskey EV, Eastell R (2014) Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos Int 25(1):251–263. doi:10.​1007/​s00198-013-2401-y CrossRefPubMed
24.
go back to reference Peterson LE, Coleman MA (2008) Machine learning-based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research. Int J Approx Reason: Off Publ N Am Fuzzy Inf Proc Soc 47(1):17–36. doi:10.1016/j.ijar.2007.03.006 CrossRef Peterson LE, Coleman MA (2008) Machine learning-based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research. Int J Approx Reason: Off Publ N Am Fuzzy Inf Proc Soc 47(1):17–36. doi:10.​1016/​j.​ijar.​2007.​03.​006 CrossRef
Metadata
Title
QCT of the proximal femur—which parameters should be measured to discriminate hip fracture?
Authors
O. Museyko
V. Bousson
J. Adams
J. -D. Laredo
K. Engelke
Publication date
01-03-2016
Publisher
Springer London
Published in
Osteoporosis International / Issue 3/2016
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-015-3324-6

Other articles of this Issue 3/2016

Osteoporosis International 3/2016 Go to the issue