Skip to main content
Top
Published in: Osteoporosis International 1/2013

Open Access 01-01-2013 | Short Communication

The cyclooxygenase-2 selective inhibitor NS-398 does not influence trabecular or cortical bone gain resulting from repeated mechanical loading in female mice

Authors: T. Sugiyama, L. B. Meakin, G. L. Galea, L. E. Lanyon, J. S. Price

Published in: Osteoporosis International | Issue 1/2013

Login to get access

Abstract

Summary

A single injection of the cyclooxygenase-2 (COX-2) selective inhibitor NS-398 reduces bone’s osteogenic response to a single period of mechanical loading in female rats, while women taking COX-2 selective inhibitors do not have lower bone mass. We show that daily NS-398 injection does not influence bone gain from repeated loading in female mice.

Introduction

Prostaglandins are mediators of bone cells’ early response to mechanical stimulation. COX-2 expression is up-regulated by exposure of these cells to mechanical strain or fluid flow, and the osteogenic response to a single loading period is reduced by COX-2 inhibition. This study determined, in female mice in vivo, the effect of longer term COX-2 inhibition on adaptive (re)modelling of cortical and trabecular bone in response to repeated loading.

Methods

Nineteen-week-old female C57BL/6 mice were injected with vehicle or NS-398 (5 mg/kg/day) 5 days a week for 2 weeks. On three alternate days each week, the right tibiae/fibulae were axially loaded [40 cycles (7 min)/day] three hours after injection. Left limbs acted as internal controls. Changes in three-dimensional bone architecture were analysed by high-resolution micro-computed tomography.

Results

In control limbs NS-398 was associated with reduced trabecular number but had no influence on cortical bone. In loaded limbs trabecular thickness and cortical periosteally enclosed volume increased. NS-398 showed no effect on this response.

Conclusion

Pharmacological inhibition of COX-2 by NS-398 does not affect trabecular or cortical bone’s response to repeated mechanical loading in female mice and thus would not be expected to impair the functional adaptation of bone to physical activity in women.
Literature
1.
go back to reference Suva LJ, Gaddy D, Perrien DS, Thomas RL, Findlay DM (2005) Regulation of bone mass by mechanical loading: microarchitecture and genetics. Curr Osteoporos Rep 3:46–51PubMedCrossRef Suva LJ, Gaddy D, Perrien DS, Thomas RL, Findlay DM (2005) Regulation of bone mass by mechanical loading: microarchitecture and genetics. Curr Osteoporos Rep 3:46–51PubMedCrossRef
2.
go back to reference Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473:117–123PubMedCrossRef Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473:117–123PubMedCrossRef
3.
go back to reference Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6:50–59PubMedCrossRef Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6:50–59PubMedCrossRef
4.
5.
go back to reference Price JS, Sugiyama T, Galea GL, Meakin LB, Sunters A, Lanyon LE (2011) Role of endocrine and paracrine factors in the adaptation of bone to mechanical loading. Curr Osteoporos Rep 9:76–82PubMedCrossRef Price JS, Sugiyama T, Galea GL, Meakin LB, Sunters A, Lanyon LE (2011) Role of endocrine and paracrine factors in the adaptation of bone to mechanical loading. Curr Osteoporos Rep 9:76–82PubMedCrossRef
6.
go back to reference Galea GL, Sunters A, Meakin LB, Zaman G, Sugiyama T, Lanyon LE, Price JS (2011) Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett 585:2450–2454PubMedCrossRef Galea GL, Sunters A, Meakin LB, Zaman G, Sugiyama T, Lanyon LE, Price JS (2011) Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett 585:2450–2454PubMedCrossRef
7.
go back to reference Pead MJ, Lanyon LE (1989) Indomethacin modulation of load-related stimulation of new bone formation in vivo. Calcif Tissue Int 45:34–40PubMedCrossRef Pead MJ, Lanyon LE (1989) Indomethacin modulation of load-related stimulation of new bone formation in vivo. Calcif Tissue Int 45:34–40PubMedCrossRef
8.
go back to reference Chow JW, Chambers TJ (1994) Indomethacin has distinct early and late actions on bone formation induced by mechanical stimulation. Am J Physiol 267:E287–E292PubMed Chow JW, Chambers TJ (1994) Indomethacin has distinct early and late actions on bone formation induced by mechanical stimulation. Am J Physiol 267:E287–E292PubMed
9.
go back to reference Forwood MR (1996) Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693PubMedCrossRef Forwood MR (1996) Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693PubMedCrossRef
10.
go back to reference Li J, Burr DB, Turner CH (2002) Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading. Calcif Tissue Int 70:320–329PubMedCrossRef Li J, Burr DB, Turner CH (2002) Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading. Calcif Tissue Int 70:320–329PubMedCrossRef
11.
go back to reference Alam I, Warden SJ, Robling AG, Turner CH (2005) Mechanotransduction in bone does not require a functional cyclooxygenase-2 (COX-2) gene. J Bone Miner Res 20:438–446PubMedCrossRef Alam I, Warden SJ, Robling AG, Turner CH (2005) Mechanotransduction in bone does not require a functional cyclooxygenase-2 (COX-2) gene. J Bone Miner Res 20:438–446PubMedCrossRef
12.
go back to reference Kohrt WM, Barry DW, Van Pelt RE, Jankowski CM, Wolfe P, Schwartz RS (2010) Timing of ibuprofen use and bone mineral density adaptations to exercise training. J Bone Miner Res 25:1415–1422PubMedCrossRef Kohrt WM, Barry DW, Van Pelt RE, Jankowski CM, Wolfe P, Schwartz RS (2010) Timing of ibuprofen use and bone mineral density adaptations to exercise training. J Bone Miner Res 25:1415–1422PubMedCrossRef
13.
go back to reference Richards JB, Joseph L, Schwartzman K, Kreiger N, Tenenhouse A, Goltzman D (2006) The effect of cyclooxygenase-2 inhibitors on bone mineral density: results from the Canadian Multicentre Osteoporosis Study. Osteoporos Int 17:1410–1419PubMedCrossRef Richards JB, Joseph L, Schwartzman K, Kreiger N, Tenenhouse A, Goltzman D (2006) The effect of cyclooxygenase-2 inhibitors on bone mineral density: results from the Canadian Multicentre Osteoporosis Study. Osteoporos Int 17:1410–1419PubMedCrossRef
14.
go back to reference De Souza RL, Matsuura M, Eckstein F, Rawlinson SC, Lanyon LE, Pitsillides AA (2005) Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 37:810–818PubMedCrossRef De Souza RL, Matsuura M, Eckstein F, Rawlinson SC, Lanyon LE, Pitsillides AA (2005) Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 37:810–818PubMedCrossRef
15.
go back to reference Moustafa A, Sugiyama T, Saxon LK, Zaman G, Sunters A, Armstrong VJ, Javaheri B, Lanyon LE, Price JS (2009) The mouse fibula as a suitable bone for the study of functional adaptation to mechanical loading. Bone 44:930–935PubMedCrossRef Moustafa A, Sugiyama T, Saxon LK, Zaman G, Sunters A, Armstrong VJ, Javaheri B, Lanyon LE, Price JS (2009) The mouse fibula as a suitable bone for the study of functional adaptation to mechanical loading. Bone 44:930–935PubMedCrossRef
16.
go back to reference Sugiyama T, Price JS, Lanyon LE (2010) Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46:314–321PubMedCrossRef Sugiyama T, Price JS, Lanyon LE (2010) Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46:314–321PubMedCrossRef
17.
go back to reference McKenzie JA, Silva MJ (2011) Comparing histological, vascular and molecular responses associated with woven and lamellar bone formation induced by mechanical loading in the rat ulna. Bone 48:250–258PubMedCrossRef McKenzie JA, Silva MJ (2011) Comparing histological, vascular and molecular responses associated with woven and lamellar bone formation induced by mechanical loading in the rat ulna. Bone 48:250–258PubMedCrossRef
18.
go back to reference Sugiyama T, Saxon LK, Zaman G, Moustafa A, Sunters A, Price JS, Lanyon LE (2008) Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1-34) on trabecular and cortical bone in mice. Bone 43:238–248PubMedCrossRef Sugiyama T, Saxon LK, Zaman G, Moustafa A, Sunters A, Price JS, Lanyon LE (2008) Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1-34) on trabecular and cortical bone in mice. Bone 43:238–248PubMedCrossRef
19.
go back to reference Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross TS, Lanyon LE, Price JS (2012) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int. doi:10.1007/s00198-011-1656-4 Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross TS, Lanyon LE, Price JS (2012) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int. doi:10.​1007/​s00198-011-1656-4
20.
go back to reference Bakker AD, Klein-Nulend J, Burger EH (2003) Mechanotransduction in bone cells proceeds via activation of COX-2, but not COX-1. Biochem Biophys Res Commun 305:677–683PubMedCrossRef Bakker AD, Klein-Nulend J, Burger EH (2003) Mechanotransduction in bone cells proceeds via activation of COX-2, but not COX-1. Biochem Biophys Res Commun 305:677–683PubMedCrossRef
Metadata
Title
The cyclooxygenase-2 selective inhibitor NS-398 does not influence trabecular or cortical bone gain resulting from repeated mechanical loading in female mice
Authors
T. Sugiyama
L. B. Meakin
G. L. Galea
L. E. Lanyon
J. S. Price
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 1/2013
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-012-1922-0

Other articles of this Issue 1/2013

Osteoporosis International 1/2013 Go to the issue