Skip to main content
Top
Published in: Osteoporosis International 7/2012

01-07-2012 | Original Article

Vertebral body bone strength: the contribution of individual trabecular element morphology

Authors: I. H. Parkinson, A. Badiei, M. Stauber, J. Codrington, R. Müller, N. L. Fazzalari

Published in: Osteoporosis International | Issue 7/2012

Login to get access

Abstract

Summary

Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading.

Introduction

Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength.

Methods

Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP).

Results

Bone volume fraction was the strongest individual determinant of SI strength (r 2 = 0.77, p < 0.0001) and AP (r 2 = 0.54, p < 0.0001). The determination of SI strength was improved to r 2 = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r 2 = 0.85 with the addition of mean rod volume and relative rod bone volume fraction.

Conclusions

Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.
Literature
1.
go back to reference Kanis JA, McCloskey E, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42:467–475PubMedCrossRef Kanis JA, McCloskey E, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42:467–475PubMedCrossRef
2.
go back to reference Anonymous (2001) The burden of brittle bones. In: Access economics, Canberra, ACT Anonymous (2001) The burden of brittle bones. In: Access economics, Canberra, ACT
3.
go back to reference Schuit SCE, van der Klift M, Weel AEAM, de Laet C, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202PubMedCrossRef Schuit SCE, van der Klift M, Weel AEAM, de Laet C, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202PubMedCrossRef
4.
go back to reference Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, Seeman E (2006) Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone 38:694–700PubMedCrossRef Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, Seeman E (2006) Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone 38:694–700PubMedCrossRef
5.
6.
go back to reference Mosekilde L (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure-biomechanical consequences. Bone 10:425–432PubMedCrossRef Mosekilde L (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure-biomechanical consequences. Bone 10:425–432PubMedCrossRef
7.
go back to reference Simpson EK, Parkinson IH, Manthey B, Fazzalari NL (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687PubMedCrossRef Simpson EK, Parkinson IH, Manthey B, Fazzalari NL (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687PubMedCrossRef
8.
go back to reference Amling M, Herden S, Posl M, Hahn M, Delling G (1994) Polyostotic heterogeneity of the spine in osteoporosis. Quantitative analysis and three-dimensional morphology. Bone Miner 27:193–208PubMedCrossRef Amling M, Herden S, Posl M, Hahn M, Delling G (1994) Polyostotic heterogeneity of the spine in osteoporosis. Quantitative analysis and three-dimensional morphology. Bone Miner 27:193–208PubMedCrossRef
9.
go back to reference Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Micros 185:67–75CrossRef Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Micros 185:67–75CrossRef
10.
go back to reference Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. CMBBE 1:15–23PubMed Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. CMBBE 1:15–23PubMed
11.
go back to reference Fields AJ, Eswaran SK, Jekir MG, Keaveny TM (2009) Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 24:1523–1530PubMedCrossRef Fields AJ, Eswaran SK, Jekir MG, Keaveny TM (2009) Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 24:1523–1530PubMedCrossRef
12.
go back to reference Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Micros 101:153–168CrossRef Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Micros 101:153–168CrossRef
13.
go back to reference Stauber M, Muller R (2006) Volumetric spatial decomposition of trabecular bone into rods and plates—a new method for local bone morphometry. Bone 38:475–484PubMedCrossRef Stauber M, Muller R (2006) Volumetric spatial decomposition of trabecular bone into rods and plates—a new method for local bone morphometry. Bone 38:475–484PubMedCrossRef
14.
go back to reference Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE (2008) Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 23:223–235PubMedCrossRef Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE (2008) Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 23:223–235PubMedCrossRef
15.
go back to reference Stauber M, Muller R (2006) Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int 17:616–626PubMedCrossRef Stauber M, Muller R (2006) Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int 17:616–626PubMedCrossRef
16.
go back to reference Melton LJ 3rd, Riggs BL, Keaveny TM, Achenbach SJ, Hoffman PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S (2007) Structural determinants of vertebral fracture risk. J Bone Miner Res 22:1885–1892PubMedCrossRef Melton LJ 3rd, Riggs BL, Keaveny TM, Achenbach SJ, Hoffman PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S (2007) Structural determinants of vertebral fracture risk. J Bone Miner Res 22:1885–1892PubMedCrossRef
17.
go back to reference Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral morphology and its contribution to vertebral fracture strength. Bone 41:946–957PubMedCrossRef Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral morphology and its contribution to vertebral fracture strength. Bone 41:946–957PubMedCrossRef
18.
go back to reference Renders GAP, Mulder L, Langenbach GEJ, van Ruijven LJ, van Eijden TMGJ (2008) Biomechanical effect of mineral heterogeneity in trabecular bone. J Biomech 41:2793–2798PubMedCrossRef Renders GAP, Mulder L, Langenbach GEJ, van Ruijven LJ, van Eijden TMGJ (2008) Biomechanical effect of mineral heterogeneity in trabecular bone. J Biomech 41:2793–2798PubMedCrossRef
19.
go back to reference Wang X, Niebur GL (2006) Microdamage propagation in trabecular bone due to changes in loading mode. J Biomech 39:781–790PubMedCrossRef Wang X, Niebur GL (2006) Microdamage propagation in trabecular bone due to changes in loading mode. J Biomech 39:781–790PubMedCrossRef
20.
go back to reference Baum T, Carballido-Gamio J, Huber MB, Muller D, Monetti R, Rath C, Eckstein F, Lochmuller EM, Majumdar S, Rummeny EJ, Link TM, Bauer JS (2010) Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA. Osteoporos Int 21:1553–1564PubMedCrossRef Baum T, Carballido-Gamio J, Huber MB, Muller D, Monetti R, Rath C, Eckstein F, Lochmuller EM, Majumdar S, Rummeny EJ, Link TM, Bauer JS (2010) Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA. Osteoporos Int 21:1553–1564PubMedCrossRef
21.
go back to reference Homminga J, Van-Rietbergen B, Lochmuller EM, Weinans H, Eckstein F, Huiskes R (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516PubMedCrossRef Homminga J, Van-Rietbergen B, Lochmuller EM, Weinans H, Eckstein F, Huiskes R (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516PubMedCrossRef
22.
go back to reference Badiei A, Bottema MJ, Fazzalari NL (2007) Influence of orthogonal overload on human vertebral trabecular bone mechanical properties. J Bone Miner Res 22:1690–1699PubMedCrossRef Badiei A, Bottema MJ, Fazzalari NL (2007) Influence of orthogonal overload on human vertebral trabecular bone mechanical properties. J Bone Miner Res 22:1690–1699PubMedCrossRef
23.
go back to reference Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11PubMedCrossRef Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11PubMedCrossRef
24.
go back to reference Otsu N (1978) A threshold selection method from gray-scale histogram. IEEE Trans Syst Man Cybern 8:62–66CrossRef Otsu N (1978) A threshold selection method from gray-scale histogram. IEEE Trans Syst Man Cybern 8:62–66CrossRef
25.
go back to reference Saha P, Chaudhuri BB (1996) 3D digital topography under binary transformation with applications. Comput Vision Image Underst 63:418–429CrossRef Saha P, Chaudhuri BB (1996) 3D digital topography under binary transformation with applications. Comput Vision Image Underst 63:418–429CrossRef
26.
go back to reference Currey JD (2002) Euler buckling. In: Currey JD (ed) Bone: structure and mechanics. Princeton University Press, Princeton, pp 231–236 Currey JD (2002) Euler buckling. In: Currey JD (ed) Bone: structure and mechanics. Princeton University Press, Princeton, pp 231–236
27.
go back to reference Hahn M, Vogel M, Popesius-Kempa M, Delling G (1992) Trabecular bone pattern factor: a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330PubMedCrossRef Hahn M, Vogel M, Popesius-Kempa M, Delling G (1992) Trabecular bone pattern factor: a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330PubMedCrossRef
28.
go back to reference Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328PubMedCrossRef Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328PubMedCrossRef
29.
go back to reference Fazzalari NL, Forwood MR, Smith K, Manthey B, Herreen P (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics and microdamage. Bone 22:381–388PubMedCrossRef Fazzalari NL, Forwood MR, Smith K, Manthey B, Herreen P (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics and microdamage. Bone 22:381–388PubMedCrossRef
30.
go back to reference Shi X, Liu XS, Wang X, Guo XE, Niebur GL (2010) Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions. J Biomech 43:2460–2466PubMedCrossRef Shi X, Liu XS, Wang X, Guo XE, Niebur GL (2010) Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions. J Biomech 43:2460–2466PubMedCrossRef
31.
go back to reference Liu XS, Zhang XH, Sajda P, Saha PK, Wehrli FW, Guo XE (2007) Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. In: ASME Summer bioengineering conference. Keystone, Colorado, pp SBC2007-176408 Liu XS, Zhang XH, Sajda P, Saha PK, Wehrli FW, Guo XE (2007) Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. In: ASME Summer bioengineering conference. Keystone, Colorado, pp SBC2007-176408
32.
go back to reference Liu XS, Sajda P, Saha PK, Wehrli FW, Guo XE (2006) Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res 21:1608–1617PubMedCrossRef Liu XS, Sajda P, Saha PK, Wehrli FW, Guo XE (2006) Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res 21:1608–1617PubMedCrossRef
33.
go back to reference Stauber M, Rapillard L, van Lenthe GH, Zysset PK, Muller R (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to the bone stiffness. J Bone Miner Res 21:586–595PubMedCrossRef Stauber M, Rapillard L, van Lenthe GH, Zysset PK, Muller R (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to the bone stiffness. J Bone Miner Res 21:586–595PubMedCrossRef
34.
go back to reference Cox LGE, Van Rietbergen B, van Donkelaar CC, Ito K (2010) Analysis of bone architecture sensitivity for changes in mechanical loading, cellular activity, mechanotransduction, and tissue properties. Biomech Model Mechanobiol. doi:10.1007/s10237-010-0267-x Cox LGE, Van Rietbergen B, van Donkelaar CC, Ito K (2010) Analysis of bone architecture sensitivity for changes in mechanical loading, cellular activity, mechanotransduction, and tissue properties. Biomech Model Mechanobiol. doi:10.​1007/​s10237-010-0267-x
Metadata
Title
Vertebral body bone strength: the contribution of individual trabecular element morphology
Authors
I. H. Parkinson
A. Badiei
M. Stauber
J. Codrington
R. Müller
N. L. Fazzalari
Publication date
01-07-2012
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 7/2012
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-011-1832-6

Other articles of this Issue 7/2012

Osteoporosis International 7/2012 Go to the issue