Skip to main content
Top
Published in: Osteoporosis International 5/2011

01-05-2011 | Original Article

Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model

Authors: J. K. R. S. Magalhaes, M. D. Grynpas, T. L. Willett, M. Glogauer

Published in: Osteoporosis International | Issue 5/2011

Login to get access

Abstract

Summary

The roles of Rac1 and Rac2 in regulating osteoclast-mediated bone quality in postmenopausal osteoporosis were evaluated using an ovariectomized murine model. Animals' bone composition and architecture were evaluated. Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to wild-type bones in an ovariectomized model.

Introduction

To determine the roles of the Rho family small GTPases Rac1 and Rac2 in regulating osteoclast-mediated bone quality in a model of postmenopausal osteoporosis.

Methods

Twelve-month-old female mice from three genotypes—wild type (WT), Rac1 null (LysM.Rac1 KO), and Rac2 null (Rac2KO)—were studied in control and ovariectomized groups (mice previously ovariectomized at 4 months of age). Animals were sacrificed at 12 months of age, and the femora and vertebrae were harvested for mechanical testing, bone densitometry, micro-computed tomography, and histomorphometric analyses to evaluate bone mineralization and architecture. The results were compared between groups using ANOVA and LSD post-hoc tests.

Results

We observed that LysM.Rac1 KO mice showed higher vertebral bone mineral density compared to WT in both control and ovariectomized groups. Consistent with this finding, LysM.Rac1 KO vertebrae showed increased resistance to fracture and increased trabecular connectivity compared to WT in both groups. Micro-CT analysis revealed that Rac2KO ovariectomized vertebrae have more trabecular bone compared to WT and LysM.Rac1 KO, but this did not translate into increased fracture resistance.

Conclusion

Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to WT bones in a postmenopausal osteoporosis model.
Literature
1.
go back to reference Parfitt AM (1982) The contribution of bone histology to understanding the pathogenesis and improving the management of osteoporosis. Clin Invest Med 5:163–167PubMed Parfitt AM (1982) The contribution of bone histology to understanding the pathogenesis and improving the management of osteoporosis. Clin Invest Med 5:163–167PubMed
2.
go back to reference Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137PubMedCrossRef Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137PubMedCrossRef
3.
go back to reference Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRef Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRef
4.
go back to reference Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136PubMedCrossRef Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136PubMedCrossRef
5.
go back to reference Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194PubMedCrossRef Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194PubMedCrossRef
6.
go back to reference Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34:1015–1030, xiCrossRef Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34:1015–1030, xiCrossRef
8.
go back to reference Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410PubMedCrossRef Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410PubMedCrossRef
9.
go back to reference Fenteany G, Glogauer M (2004) Cytoskeletal remodeling in leukocyte function. Curr Opin Hematol 11:15–24PubMedCrossRef Fenteany G, Glogauer M (2004) Cytoskeletal remodeling in leukocyte function. Curr Opin Hematol 11:15–24PubMedCrossRef
10.
go back to reference Razzouk S, Lieberherr M, Cournot G (1999) Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol 78:249–255PubMed Razzouk S, Lieberherr M, Cournot G (1999) Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol 78:249–255PubMed
11.
go back to reference Fukuda A, Hikita A, Wakeyama H, Akiyama T, Oda H, Nakamura K, Tanaka S (2005) Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. J Bone Miner Res 20:2245–2253PubMedCrossRef Fukuda A, Hikita A, Wakeyama H, Akiyama T, Oda H, Nakamura K, Tanaka S (2005) Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. J Bone Miner Res 20:2245–2253PubMedCrossRef
12.
go back to reference Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M (2008) Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 23:260–270PubMedCrossRef Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M (2008) Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 23:260–270PubMedCrossRef
13.
go back to reference Sun CX, Magalhaes MA, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179:239–245PubMedCrossRef Sun CX, Magalhaes MA, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179:239–245PubMedCrossRef
14.
go back to reference Sun CX, Downey GP, Zhu F, Koh AL, Thang H, Glogauer M (2004) Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104:3758–3765PubMedCrossRef Sun CX, Downey GP, Zhu F, Koh AL, Thang H, Glogauer M (2004) Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104:3758–3765PubMedCrossRef
15.
go back to reference Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB, Atkinson SJ, Dinauer MC, Williams DA (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10:183–196PubMedCrossRef Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB, Atkinson SJ, Dinauer MC, Williams DA (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10:183–196PubMedCrossRef
16.
go back to reference Glogauer M, Marchal CC, Zhu F, Worku A, Clausen BE, Foerster I, Marks P, Downey GP, Dinauer M, Kwiatkowski DJ (2003) Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol 170:5652–5657PubMed Glogauer M, Marchal CC, Zhu F, Worku A, Clausen BE, Foerster I, Marks P, Downey GP, Dinauer M, Kwiatkowski DJ (2003) Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol 170:5652–5657PubMed
17.
go back to reference Wang Y, Belsham DD, Glogauer M (2009) Rac1 and Rac2 in osteoclastogenesis: a cell immortalization model. Calcif Tissue Int 85:257–266PubMedCrossRef Wang Y, Belsham DD, Glogauer M (2009) Rac1 and Rac2 in osteoclastogenesis: a cell immortalization model. Calcif Tissue Int 85:257–266PubMedCrossRef
18.
go back to reference Mousny M, Banse X, Wise L, Everett ET, Hancock R, Vieth R, Devogelaer JP, Grynpas MD (2006) The genetic influence on bone susceptibility to fluoride. Bone 39:1283–1289PubMedCrossRef Mousny M, Banse X, Wise L, Everett ET, Hancock R, Vieth R, Devogelaer JP, Grynpas MD (2006) The genetic influence on bone susceptibility to fluoride. Bone 39:1283–1289PubMedCrossRef
19.
go back to reference Turner CH, Hinckley WR, Wilson ME, Zhang W, Dunipace AJ (2001) Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats. Calcif Tissue Int 69:51–57PubMedCrossRef Turner CH, Hinckley WR, Wilson ME, Zhang W, Dunipace AJ (2001) Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats. Calcif Tissue Int 69:51–57PubMedCrossRef
20.
go back to reference Holmes C, Khan TS, Owen C, Ciliberti N, Grynpas MD, Stanford WL (2007) Longitudinal analysis of mesenchymal progenitors and bone quality in the stem cell antigen-1-null osteoporotic mouse. J Bone Miner Res 22:1373–1386PubMedCrossRef Holmes C, Khan TS, Owen C, Ciliberti N, Grynpas MD, Stanford WL (2007) Longitudinal analysis of mesenchymal progenitors and bone quality in the stem cell antigen-1-null osteoporotic mouse. J Bone Miner Res 22:1373–1386PubMedCrossRef
21.
go back to reference Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2:595–610PubMedCrossRef Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2:595–610PubMedCrossRef
22.
go back to reference Boyde A, Jones SJ (1983) Back-scattered electron imaging of skeletal tissues. Metab Bone Dis Relat Res 5:145–150PubMedCrossRef Boyde A, Jones SJ (1983) Back-scattered electron imaging of skeletal tissues. Metab Bone Dis Relat Res 5:145–150PubMedCrossRef
23.
go back to reference Lundon K, Dumitriu M, Grynpas M (1994) The long-term effect of ovariectomy on the quality and quantity of cancellous bone in young macaques. Bone Miner 24:135–149PubMedCrossRef Lundon K, Dumitriu M, Grynpas M (1994) The long-term effect of ovariectomy on the quality and quantity of cancellous bone in young macaques. Bone Miner 24:135–149PubMedCrossRef
24.
go back to reference Mellish RW, Ferguson-Pell MW, Cochran GV, Lindsay R, Dempster DW (1991) A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696PubMedCrossRef Mellish RW, Ferguson-Pell MW, Cochran GV, Lindsay R, Dempster DW (1991) A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696PubMedCrossRef
25.
go back to reference Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101:1942–1950PubMedCrossRef Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101:1942–1950PubMedCrossRef
26.
go back to reference Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91PubMedCrossRef Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91PubMedCrossRef
27.
28.
go back to reference Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325PubMedCrossRef Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325PubMedCrossRef
29.
go back to reference Guo F, Cancelas JA, Hildeman D, Williams DA, Zheng Y (2008) Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development. Blood 112:1767–1775PubMedCrossRef Guo F, Cancelas JA, Hildeman D, Williams DA, Zheng Y (2008) Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development. Blood 112:1767–1775PubMedCrossRef
30.
go back to reference Wheeler AP, Wells CM, Smith SD, Vega FM, Henderson RB, Tybulewicz VL, Ridley AJ (2006) Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 119:2749–2757PubMedCrossRef Wheeler AP, Wells CM, Smith SD, Vega FM, Henderson RB, Tybulewicz VL, Ridley AJ (2006) Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 119:2749–2757PubMedCrossRef
31.
go back to reference Bain SD, Bailey MC, Celino DL, Lantry MM, Edwards MW (1993) High-dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse. J Bone Miner Res 8:435–442PubMedCrossRef Bain SD, Bailey MC, Celino DL, Lantry MM, Edwards MW (1993) High-dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse. J Bone Miner Res 8:435–442PubMedCrossRef
32.
go back to reference Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ 3rd (1982) Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 70:716–723PubMedCrossRef Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ 3rd (1982) Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 70:716–723PubMedCrossRef
33.
go back to reference Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230PubMed Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230PubMed
34.
go back to reference Lee NK, Choi HK, Kim DK, Lee SY (2006) Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced NF-kappaB activation. Mol Cell Biochem 281:55–61PubMedCrossRef Lee NK, Choi HK, Kim DK, Lee SY (2006) Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced NF-kappaB activation. Mol Cell Biochem 281:55–61PubMedCrossRef
35.
36.
go back to reference Chambers TJ (2000) Regulation of the differentiation and function of osteoclasts. J Pathol 192:4–13PubMedCrossRef Chambers TJ (2000) Regulation of the differentiation and function of osteoclasts. J Pathol 192:4–13PubMedCrossRef
37.
go back to reference Garimella R, Tague SE, Zhang J, Belibi F, Nahar N, Sun BH, Insogna K, Wang J, Anderson HC (2008) Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling. J Histochem Cytochem 56:569–577PubMedCrossRef Garimella R, Tague SE, Zhang J, Belibi F, Nahar N, Sun BH, Insogna K, Wang J, Anderson HC (2008) Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling. J Histochem Cytochem 56:569–577PubMedCrossRef
38.
go back to reference Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R (2001) Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 276:8836–8840PubMedCrossRef Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R (2001) Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 276:8836–8840PubMedCrossRef
39.
go back to reference Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750PubMedCrossRef Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750PubMedCrossRef
40.
go back to reference Lochmuller EM, Kristin J, Matsuura M, Kuhn V, Hudelmaier M, Link TM, Eckstein F (2008) Measurement of trabecular bone microstructure does not improve prediction of mechanical failure loads at the distal radius compared with bone mass alone. Calcif Tissue Int 83:293–299PubMedCrossRef Lochmuller EM, Kristin J, Matsuura M, Kuhn V, Hudelmaier M, Link TM, Eckstein F (2008) Measurement of trabecular bone microstructure does not improve prediction of mechanical failure loads at the distal radius compared with bone mass alone. Calcif Tissue Int 83:293–299PubMedCrossRef
41.
go back to reference Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638PubMedCrossRef Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638PubMedCrossRef
42.
go back to reference Kreider JM, Goldstein SA (2009) Trabecular bone mechanical properties in patients with fragility fractures. Clin Orthop Relat Res 467:1955–1963PubMedCrossRef Kreider JM, Goldstein SA (2009) Trabecular bone mechanical properties in patients with fragility fractures. Clin Orthop Relat Res 467:1955–1963PubMedCrossRef
Metadata
Title
Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model
Authors
J. K. R. S. Magalhaes
M. D. Grynpas
T. L. Willett
M. Glogauer
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 5/2011
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-010-1355-6

Other articles of this Issue 5/2011

Osteoporosis International 5/2011 Go to the issue