Skip to main content
Top
Published in: Osteoporosis International 5/2011

01-05-2011 | Original Article

Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis

Authors: J. Baird, M. A. Kurshid, M. Kim, N. Harvey, E. Dennison, C. Cooper

Published in: Osteoporosis International | Issue 5/2011

Login to get access

Abstract

Summary

This systematic review and meta-analysis assessed the strength and magnitude of the association between birthweight and adult bone mass. Higher birthweight was associated with higher bone mineral content of the spine and hip in adult men and women at ages between 18 and 80 years across a range of settings.

Introduction

The aim of this review was to assess the strength and magnitude of the association between early size and adult bone mass.

Methods

Systematic review and meta-analysis of studies that assessed the association between birthweight or weight at 1 year, and bone mineral content (BMC) or bone mineral density (BMD) in adulthood.

Results

Fourteen studies met inclusion criteria. Nine assessed the relationship between birthweight and lumbar spine BMC, most showing that higher birthweight was associated with greater adult BMC. Meta-analysis demonstrated that a 1 kg increase in birthweight was associated with a 1.49 g increase in lumbar spine BMC (95% CI 0.77-2.21). Birthweight was not associated with lumbar spine BMD in 11 studies. In six studies, considering the relationship between birthweight and hip BMC, most found that higher birthweight was associated with greater BMC. Meta-analysis demonstrated that a 1 kg increase in birthweight was associated with a 1.41 g increase in hip BMC (95% CI 0.91-1.91). Seven studies considered the relationship between birthweight and hip BMD and, in most, birthweight was not a significant predictor of hip BMD. Three studies assessing the relationship between weight at 1 year and adult bone mass all reported that higher weight at one was associated with greater BMC of the lumbar spine and hip.

Conclusions

Higher birthweight is associated with greater BMC of the lumbar spine and hip in adulthood. The consistency of these associations, across a range of settings, provides compelling evidence for the intrauterine programming of skeletal development and tracking of skeletal size from infancy to adulthood.
Literature
1.
go back to reference Cooper C (1993) Epidemiology and public health impact of osteoporosis. Balliere’s Clin Rheumatol 7:459–477CrossRef Cooper C (1993) Epidemiology and public health impact of osteoporosis. Balliere’s Clin Rheumatol 7:459–477CrossRef
2.
go back to reference Cooper C, Westlake S, Harvey N, Javaid K, Dennison D, Hanson M (2006) Review: developmental origins of osteoporotic fracture. Osteoporosis Int 17:337–347CrossRef Cooper C, Westlake S, Harvey N, Javaid K, Dennison D, Hanson M (2006) Review: developmental origins of osteoporotic fracture. Osteoporosis Int 17:337–347CrossRef
4.
go back to reference Bland M (1995) Regression and correlation. An introduction to medical statistics. Oxford University Press, Oxford, pp 180–204 Bland M (1995) Regression and correlation. An introduction to medical statistics. Oxford University Press, Oxford, pp 180–204
5.
go back to reference StataCorp (2009) Stata Statistical Software: Release 11. StataCorp LP, College Station StataCorp (2009) Stata Statistical Software: Release 11. StataCorp LP, College Station
6.
go back to reference Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748PubMed Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748PubMed
7.
8.
go back to reference Hamed HM, Purdie DW, Ramsden CS, Carmichael B, Steel SA, Howey S (1993) Influence of birth weight on adult bone mineral density. Osteoporosis Int 3(1):1–2CrossRef Hamed HM, Purdie DW, Ramsden CS, Carmichael B, Steel SA, Howey S (1993) Influence of birth weight on adult bone mineral density. Osteoporosis Int 3(1):1–2CrossRef
9.
go back to reference Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, Barker D (1995) Childhood growth, physical activity, and peak bone mass in women. J Bone Mineral Res 10(6):940–947CrossRef Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, Barker D (1995) Childhood growth, physical activity, and peak bone mass in women. J Bone Mineral Res 10(6):940–947CrossRef
10.
go back to reference Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D (1997) Growth in infancy and bone mass in later life. Ann Rheumat Dis 56(1):17–21PubMedCrossRef Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D (1997) Growth in infancy and bone mass in later life. Ann Rheumat Dis 56(1):17–21PubMedCrossRef
11.
go back to reference Yarbrough DE, Barrett-Connor E, Morton DJ (2000) Birth weight as a predictor of adult bone mass in postmenopausal women: the Rancho Bernardo Study. Osteoporosis Int 11(7):626–630CrossRef Yarbrough DE, Barrett-Connor E, Morton DJ (2000) Birth weight as a predictor of adult bone mass in postmenopausal women: the Rancho Bernardo Study. Osteoporosis Int 11(7):626–630CrossRef
12.
go back to reference Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C (2001) Intrauterine programming of adult body composition. J Clin Endocrinol Metab 86:267–272PubMedCrossRef Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C (2001) Intrauterine programming of adult body composition. J Clin Endocrinol Metab 86:267–272PubMedCrossRef
13.
go back to reference McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van’t Hof R, Boreham C, Ralston SH (2002) Genetic and environmental determinants of peak bone mass in young men and women. J Bone Mineral Res 17(7):1273–1279CrossRef McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van’t Hof R, Boreham C, Ralston SH (2002) Genetic and environmental determinants of peak bone mass in young men and women. J Bone Mineral Res 17(7):1273–1279CrossRef
14.
go back to reference Antoniades L, MacGregor AJ, Andrew T, Spector TD (2003) Association of birth weight with osteoporosis and osteoarthritis in adult twins. Rheumatol 42(6):791–796CrossRef Antoniades L, MacGregor AJ, Andrew T, Spector TD (2003) Association of birth weight with osteoporosis and osteoarthritis in adult twins. Rheumatol 42(6):791–796CrossRef
15.
go back to reference te Velde SJ, Twisk JW, van Mechelen W, Kemper HC (2004) Birth weight and musculoskeletal health in 36-year-old men and women: results from the Amsterdam Growth and Health Longitudinal Study. Osteoporosis Int 15(5):382–388CrossRef te Velde SJ, Twisk JW, van Mechelen W, Kemper HC (2004) Birth weight and musculoskeletal health in 36-year-old men and women: results from the Amsterdam Growth and Health Longitudinal Study. Osteoporosis Int 15(5):382–388CrossRef
16.
go back to reference Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Ped Res 57(4):1–6CrossRef Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Ped Res 57(4):1–6CrossRef
17.
go back to reference Saito T, Nakamura K, Okuda Y, Nashimoto M, Yamamoto N, Yamamoto M (2005) Weight gain in childhood and bone mass in female college students. J Bone Mineral Metab 23(1):69–75CrossRef Saito T, Nakamura K, Okuda Y, Nashimoto M, Yamamoto N, Yamamoto M (2005) Weight gain in childhood and bone mass in female college students. J Bone Mineral Metab 23(1):69–75CrossRef
18.
go back to reference Pearce MS, Birrell FN, Francis RM, Rawlings DJ, Tuck SP, Parker L (2005) Lifecourse study of bone health at age 49–51 years: the Newcastle thousand families cohort study. J Epidemiol Community Health 59:475–480PubMedCrossRef Pearce MS, Birrell FN, Francis RM, Rawlings DJ, Tuck SP, Parker L (2005) Lifecourse study of bone health at age 49–51 years: the Newcastle thousand families cohort study. J Epidemiol Community Health 59:475–480PubMedCrossRef
19.
go back to reference Dalziel SR, Fenwick S, Cundy T, Parag V, Beck TJ, Rodgers A, Harding JE (2006) Peak bone mass after exposure to antenatal Betamethasone and prematurity: follow-up of a randomized controlled trial. J Bone Mineral Res 21(8):1175–1186CrossRef Dalziel SR, Fenwick S, Cundy T, Parag V, Beck TJ, Rodgers A, Harding JE (2006) Peak bone mass after exposure to antenatal Betamethasone and prematurity: follow-up of a randomized controlled trial. J Bone Mineral Res 21(8):1175–1186CrossRef
20.
go back to reference Leunissen RW, Stijnen T, Boot AM, Hokken-Koelega AC (2008) Influence of birth size and body composition on bone mineral density in early adulthood: the PROGRAM study. Clin Endocrinol 69(3):386–392CrossRef Leunissen RW, Stijnen T, Boot AM, Hokken-Koelega AC (2008) Influence of birth size and body composition on bone mineral density in early adulthood: the PROGRAM study. Clin Endocrinol 69(3):386–392CrossRef
21.
go back to reference Laitinen J, Kiukaanniemi K, Heikkinen J, Koiranen M, Nieminen P, Sovio U, Keinanen-Kiukaanniemi S, Jarvelin MR (2005) Body size from birth to adulthood and bone mineral content and density at 31 years of age: results from the northern Finland 1966 birth cohort study. Osteoporosis Int 16(11):1417–1424CrossRef Laitinen J, Kiukaanniemi K, Heikkinen J, Koiranen M, Nieminen P, Sovio U, Keinanen-Kiukaanniemi S, Jarvelin MR (2005) Body size from birth to adulthood and bone mineral content and density at 31 years of age: results from the northern Finland 1966 birth cohort study. Osteoporosis Int 16(11):1417–1424CrossRef
22.
go back to reference Cummings SR, Marcus R, Palermo L, Ensrud KE, Genant HK, and the Study of Osteoporotic Fractures Research Group (1994) Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. J Bone Miner Res 9(9):1429–1432PubMedCrossRef Cummings SR, Marcus R, Palermo L, Ensrud KE, Genant HK, and the Study of Osteoporotic Fractures Research Group (1994) Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. J Bone Miner Res 9(9):1429–1432PubMedCrossRef
23.
go back to reference Oliver H, Jameson K, Sayer AA, Cooper C, Dennison E, and the Hertfordshire Cohort Study Group (2007) Growth in early life predicts bone strength in late adulthood: the Hertfordshire Cohort Study. Bone 41(3):400–405PubMedCrossRef Oliver H, Jameson K, Sayer AA, Cooper C, Dennison E, and the Hertfordshire Cohort Study Group (2007) Growth in early life predicts bone strength in late adulthood: the Hertfordshire Cohort Study. Bone 41(3):400–405PubMedCrossRef
24.
go back to reference Javaid MK, Lekamwasam S, Clark J, Dennison EM, Syddall HE, Loveridge N, Reeve J, Beck TJ, Cooper C, and the Hertfordshire Cohort Study Group (2006) Infant growth influences proximal femoral geometry in adulthood. J Bone Miner Res 21(4):508–512PubMedCrossRef Javaid MK, Lekamwasam S, Clark J, Dennison EM, Syddall HE, Loveridge N, Reeve J, Beck TJ, Cooper C, and the Hertfordshire Cohort Study Group (2006) Infant growth influences proximal femoral geometry in adulthood. J Bone Miner Res 21(4):508–512PubMedCrossRef
25.
go back to reference Eriksson JG, Kajante E, Osmond C, Thornburg K, Barker DJP (2010) Boys live dangerously in the womb. Am J Hum Biol 22:330–335PubMedCrossRef Eriksson JG, Kajante E, Osmond C, Thornburg K, Barker DJP (2010) Boys live dangerously in the womb. Am J Hum Biol 22:330–335PubMedCrossRef
Metadata
Title
Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis
Authors
J. Baird
M. A. Kurshid
M. Kim
N. Harvey
E. Dennison
C. Cooper
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 5/2011
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-010-1344-9

Other articles of this Issue 5/2011

Osteoporosis International 5/2011 Go to the issue