Skip to main content
Top
Published in: Osteoporosis International 4/2010

Open Access 01-04-2010 | Review

Sarcopenia: etiology, clinical consequences, intervention, and assessment

Authors: T. Lang, T. Streeper, P. Cawthon, K. Baldwin, D. R. Taaffe, T. B. Harris

Published in: Osteoporosis International | Issue 4/2010

Login to get access

Abstract

The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence.
Literature
1.
go back to reference Bureau UC (2006) In: Bureau UC (ed) US Census Bureau: international database. Table 94. Bureau UC (2006) In: Bureau UC (ed) US Census Bureau: international database. Table 94.
2.
go back to reference Greenlund LJ, Nair KS (2003) Sarcopenia—consequences, mechanisms, and potential therapies. Mech Ageing Dev 124:287–299PubMed Greenlund LJ, Nair KS (2003) Sarcopenia—consequences, mechanisms, and potential therapies. Mech Ageing Dev 124:287–299PubMed
3.
go back to reference Brooks SV (2003) Current topics for teaching skeletal muscle physiology. Adv Physiol Educ 27:171–182PubMed Brooks SV (2003) Current topics for teaching skeletal muscle physiology. Adv Physiol Educ 27:171–182PubMed
4.
go back to reference Faulkner JA, Larkin LM, Claflin DR, Brooks SV (2007) Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34:1091–1096PubMed Faulkner JA, Larkin LM, Claflin DR, Brooks SV (2007) Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34:1091–1096PubMed
5.
go back to reference Brooks SV, Faulkner JA (1994) Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc 26:432–439PubMed Brooks SV, Faulkner JA (1994) Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc 26:432–439PubMed
6.
go back to reference Celichowski J (2000) Mechanisms underlying the regulation of motor unit contraction in the skeletal muscle. J Physiol Pharmacol 51:17–33PubMed Celichowski J (2000) Mechanisms underlying the regulation of motor unit contraction in the skeletal muscle. J Physiol Pharmacol 51:17–33PubMed
7.
go back to reference Herzog W, Ait-Haddou R (2002) Considerations on muscle contraction. J Electromyogr Kinesiol 12:425–433PubMed Herzog W, Ait-Haddou R (2002) Considerations on muscle contraction. J Electromyogr Kinesiol 12:425–433PubMed
8.
go back to reference Larsson L, Ramamurthy B (2000) Aging-related changes in skeletal muscle. Mechanisms and interventions. Drugs Aging 17:303–316PubMed Larsson L, Ramamurthy B (2000) Aging-related changes in skeletal muscle. Mechanisms and interventions. Drugs Aging 17:303–316PubMed
9.
go back to reference Porter MM, Vandervoort AA, Lexell J (1995) Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports 5:129–142PubMedCrossRef Porter MM, Vandervoort AA, Lexell J (1995) Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports 5:129–142PubMedCrossRef
10.
go back to reference Sakamoto K, Goodyear LJ (2002) Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol 93:369–383PubMed Sakamoto K, Goodyear LJ (2002) Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol 93:369–383PubMed
11.
go back to reference Westerblad H, Allen DG, Bruton JD, Andrade FH, Lannergren J (1998) Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiol Scand 162:253–260PubMed Westerblad H, Allen DG, Bruton JD, Andrade FH, Lannergren J (1998) Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiol Scand 162:253–260PubMed
12.
go back to reference Wick M (1999) Filament assembly properties of the sarcomeric myosin heavy chain. Poult Sci 78:735–742PubMed Wick M (1999) Filament assembly properties of the sarcomeric myosin heavy chain. Poult Sci 78:735–742PubMed
13.
go back to reference Lexell J, Downham DY (1991) The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol 81:377–381PubMed Lexell J, Downham DY (1991) The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol 81:377–381PubMed
14.
go back to reference Lexell J, Downham DY, Larsson Y, Bruhn E, Morsing B (1995) Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles. Scand J Med Sci Sports 5:329–341PubMed Lexell J, Downham DY, Larsson Y, Bruhn E, Morsing B (1995) Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles. Scand J Med Sci Sports 5:329–341PubMed
15.
go back to reference Kostka T (2005) Quadriceps maximal power and optimal shortening velocity in 335 men aged 23–88 years. Eur J Appl Physiol 95:140–145PubMed Kostka T (2005) Quadriceps maximal power and optimal shortening velocity in 335 men aged 23–88 years. Eur J Appl Physiol 95:140–145PubMed
16.
go back to reference Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25:17–25PubMed Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25:17–25PubMed
17.
go back to reference Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727PubMed Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727PubMed
18.
go back to reference Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767PubMed Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767PubMed
19.
go back to reference Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66PubMed Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66PubMed
20.
go back to reference Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404PubMed Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404PubMed
21.
go back to reference Shefer G, Yablonka-Reuveni Z (2007) Reflections on lineage potential of skeletal muscle satellite cells: do they sometimes go MAD? Crit Rev Eukaryot Gene Expr 17:13–29PubMed Shefer G, Yablonka-Reuveni Z (2007) Reflections on lineage potential of skeletal muscle satellite cells: do they sometimes go MAD? Crit Rev Eukaryot Gene Expr 17:13–29PubMed
22.
go back to reference Dube J, Goodpaster BH (2006) Assessment of intramuscular triglycerides: contribution to metabolic abnormalities. Curr Opin Clin Nutr Metab Care 9:553–559PubMed Dube J, Goodpaster BH (2006) Assessment of intramuscular triglycerides: contribution to metabolic abnormalities. Curr Opin Clin Nutr Metab Care 9:553–559PubMed
23.
go back to reference Goodpaster BH, Brown NF (2005) Skeletal muscle lipid and its association with insulin resistance: what is the role for exercise? Exerc Sport Sci Rev 33:150–154PubMed Goodpaster BH, Brown NF (2005) Skeletal muscle lipid and its association with insulin resistance: what is the role for exercise? Exerc Sport Sci Rev 33:150–154PubMed
24.
go back to reference Goodpaster BH, Kelley DE (2002) Skeletal muscle triglyceride: marker or mediator of obesity-induced insulin resistance in type 2 diabetes mellitus? Curr Diab Rep 2:216–222PubMed Goodpaster BH, Kelley DE (2002) Skeletal muscle triglyceride: marker or mediator of obesity-induced insulin resistance in type 2 diabetes mellitus? Curr Diab Rep 2:216–222PubMed
25.
go back to reference Johnson NA, Stannard SR, Thompson MW (2004) Muscle triglyceride and glycogen in endurance exercise: implications for performance. Sports Med 34:151–164PubMed Johnson NA, Stannard SR, Thompson MW (2004) Muscle triglyceride and glycogen in endurance exercise: implications for performance. Sports Med 34:151–164PubMed
26.
go back to reference Kelley DE (2002) Skeletal muscle triglycerides: an aspect of regional adiposity and insulin resistance. Ann N Y Acad Sci 967:135–145PubMedCrossRef Kelley DE (2002) Skeletal muscle triglycerides: an aspect of regional adiposity and insulin resistance. Ann N Y Acad Sci 967:135–145PubMedCrossRef
27.
go back to reference Kelley DE, Goodpaster BH, Storlien L (2002) Muscle triglyceride and insulin resistance. Annu Rev Nutr 22:325–346PubMed Kelley DE, Goodpaster BH, Storlien L (2002) Muscle triglyceride and insulin resistance. Annu Rev Nutr 22:325–346PubMed
28.
go back to reference Kraegen EW, Cooney GJ (2008) Free fatty acids and skeletal muscle insulin resistance. Curr Opin Lipidol 19:235–241PubMed Kraegen EW, Cooney GJ (2008) Free fatty acids and skeletal muscle insulin resistance. Curr Opin Lipidol 19:235–241PubMed
29.
go back to reference Hamilton MT, Areiqat E, Hamilton DG, Bey L (2001) Plasma triglyceride metabolism in humans and rats during aging and physical inactivity. Int J Sport Nutr Exerc Metab 11(Suppl):S97–104PubMed Hamilton MT, Areiqat E, Hamilton DG, Bey L (2001) Plasma triglyceride metabolism in humans and rats during aging and physical inactivity. Int J Sport Nutr Exerc Metab 11(Suppl):S97–104PubMed
30.
go back to reference Ramirez V, Ulfhake B (1992) Anatomy of dendrites in motoneurons supplying the intrinsic muscles of the foot sole in the aged cat: evidence for dendritic growth and neo-synaptogenesis. J Comp Neurol 316:1–16PubMed Ramirez V, Ulfhake B (1992) Anatomy of dendrites in motoneurons supplying the intrinsic muscles of the foot sole in the aged cat: evidence for dendritic growth and neo-synaptogenesis. J Comp Neurol 316:1–16PubMed
31.
go back to reference Kullberg S, Ramirez-Leon V, Johnson H, Ulfhake B (1998) Decreased axosomatic input to motoneurons and astrogliosis in the spinal cord of aged rats. J Gerontol Ser A Biol Sci Med Sci 53:B369–379 Kullberg S, Ramirez-Leon V, Johnson H, Ulfhake B (1998) Decreased axosomatic input to motoneurons and astrogliosis in the spinal cord of aged rats. J Gerontol Ser A Biol Sci Med Sci 53:B369–379
32.
go back to reference Gordon T, Hegedus J, Tam SL (2004) Adaptive and maladaptive motor axonal sprouting in aging and motoneuron disease. Neurol Res 26:174–185PubMed Gordon T, Hegedus J, Tam SL (2004) Adaptive and maladaptive motor axonal sprouting in aging and motoneuron disease. Neurol Res 26:174–185PubMed
33.
go back to reference Florini JR, Ewton DZ, Falen SL, Van Wyk JJ (1986) Biphasic concentration dependency of stimulation of myoblast differentiation by somatomedins. Am J Physiol 250:C771–778PubMed Florini JR, Ewton DZ, Falen SL, Van Wyk JJ (1986) Biphasic concentration dependency of stimulation of myoblast differentiation by somatomedins. Am J Physiol 250:C771–778PubMed
34.
go back to reference Goldspink G, Yang SY (2004) The splicing of the IGF-I gene to yield different muscle growth factors. Adv Genet 52:23–49PubMed Goldspink G, Yang SY (2004) The splicing of the IGF-I gene to yield different muscle growth factors. Adv Genet 52:23–49PubMed
35.
go back to reference Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200PubMed Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200PubMed
36.
go back to reference Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291:E937–946PubMed Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291:E937–946PubMed
37.
go back to reference Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23:824–854PubMed Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23:824–854PubMed
38.
go back to reference Messi ML, Delbono O (2003) Target-derived trophic effect on skeletal muscle innervation in senescent mice. J Neurosci 23:1351–1359PubMed Messi ML, Delbono O (2003) Target-derived trophic effect on skeletal muscle innervation in senescent mice. J Neurosci 23:1351–1359PubMed
39.
go back to reference Schertzer JD, van der Poel C, Shavlakadze T, Grounds MD, Lynch GS (2008) Muscle-specific overexpression of IGF-I improves E–C coupling in skeletal muscle fibers from dystrophic mdx mice. Am J Physiol Cell Physiol 294:C161–168PubMed Schertzer JD, van der Poel C, Shavlakadze T, Grounds MD, Lynch GS (2008) Muscle-specific overexpression of IGF-I improves E–C coupling in skeletal muscle fibers from dystrophic mdx mice. Am J Physiol Cell Physiol 294:C161–168PubMed
40.
go back to reference Rasmussen BB, Fujita S, Wolfe RR, Mittendorfer B, Roy M, Rowe VL, Volpi E (2006) Insulin resistance of muscle protein metabolism in aging. FASEB J 20:768–769PubMed Rasmussen BB, Fujita S, Wolfe RR, Mittendorfer B, Roy M, Rowe VL, Volpi E (2006) Insulin resistance of muscle protein metabolism in aging. FASEB J 20:768–769PubMed
41.
go back to reference Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33:155–165PubMed Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33:155–165PubMed
42.
go back to reference Reid MB (2005) Response of the ubiquitin–proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 288:R1423–1431PubMed Reid MB (2005) Response of the ubiquitin–proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 288:R1423–1431PubMed
43.
go back to reference Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC (2005) Identification of a molecular signature of sarcopenia. Physiol Genomics 21:253–263PubMed Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC (2005) Identification of a molecular signature of sarcopenia. Physiol Genomics 21:253–263PubMed
44.
go back to reference Leeuwenburgh C (2003) Role of apoptosis in sarcopenia. J Gerontol Ser A Biol Sci Med Sci 58:999–1001 Leeuwenburgh C (2003) Role of apoptosis in sarcopenia. J Gerontol Ser A Biol Sci Med Sci 58:999–1001
45.
go back to reference Hiona A, Leeuwenburgh C (2008) The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol 43:24–33PubMed Hiona A, Leeuwenburgh C (2008) The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol 43:24–33PubMed
46.
go back to reference Dirks AJ, Hofer T, Marzetti E, Pahor M, Leeuwenburgh C (2006) Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev 5:179–195PubMed Dirks AJ, Hofer T, Marzetti E, Pahor M, Leeuwenburgh C (2006) Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev 5:179–195PubMed
47.
go back to reference Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM (2007) Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol Ser A Biol Sci Med Sci 62:235–245 Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM (2007) Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol Ser A Biol Sci Med Sci 62:235–245
48.
go back to reference Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577PubMed Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577PubMed
49.
go back to reference Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292:E151–157PubMed Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292:E151–157PubMed
50.
go back to reference Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33:242–253PubMed Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33:242–253PubMed
51.
go back to reference Gallegly JC, Turesky NA, Strotman BA, Gurley CM, Peterson CA, Dupont-Versteegden EE (2004) Satellite cell regulation of muscle mass is altered at old age. J Appl Physiol 97:1082–1090PubMed Gallegly JC, Turesky NA, Strotman BA, Gurley CM, Peterson CA, Dupont-Versteegden EE (2004) Satellite cell regulation of muscle mass is altered at old age. J Appl Physiol 97:1082–1090PubMed
52.
go back to reference Bigot A, Jacquemin V, Debacq-Chainiaux F, Butler-Browne GS, Toussaint O, Furling D, Mouly V (2008) Replicative aging down-regulates the myogenic regulatory factors in human myoblasts. Biol Cell 100:189–199PubMed Bigot A, Jacquemin V, Debacq-Chainiaux F, Butler-Browne GS, Toussaint O, Furling D, Mouly V (2008) Replicative aging down-regulates the myogenic regulatory factors in human myoblasts. Biol Cell 100:189–199PubMed
53.
go back to reference McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147PubMed McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147PubMed
54.
go back to reference Kawada S, Tachi C, Ishii N (2001) Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22:627–633PubMed Kawada S, Tachi C, Ishii N (2001) Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22:627–633PubMed
55.
go back to reference Baumann AP, Ibebunjo C, Grasser WA, Paralkar VM (2003) Myostatin expression in age and denervation-induced skeletal muscle atrophy. J Musculoskelet Neuronal Interact 3:8–16PubMed Baumann AP, Ibebunjo C, Grasser WA, Paralkar VM (2003) Myostatin expression in age and denervation-induced skeletal muscle atrophy. J Musculoskelet Neuronal Interact 3:8–16PubMed
56.
go back to reference Welle S (2002) Cellular and molecular basis of age-related sarcopenia. Can J Appl Physiol 27:19–41PubMed Welle S (2002) Cellular and molecular basis of age-related sarcopenia. Can J Appl Physiol 27:19–41PubMed
57.
go back to reference Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S (2006) Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J Appl Physiol 101:53–59PubMed Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S (2006) Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J Appl Physiol 101:53–59PubMed
58.
go back to reference Shadwick RE (1990) Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol 68:1033–1040PubMed Shadwick RE (1990) Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol 68:1033–1040PubMed
59.
go back to reference Nakagawa Y, Hayashi K, Yamamoto N, Nagashima K (1996) Age-related changes in biomechanical properties of the Achilles tendon in rabbits. Eur J Appl Physiol Occup Physiol 73:7–10PubMed Nakagawa Y, Hayashi K, Yamamoto N, Nagashima K (1996) Age-related changes in biomechanical properties of the Achilles tendon in rabbits. Eur J Appl Physiol Occup Physiol 73:7–10PubMed
60.
go back to reference Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effects of donor age and strain rate on the biomechanical properties of bone–patellar tendon–bone allografts. Am J Sports Med 22:328–333PubMed Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effects of donor age and strain rate on the biomechanical properties of bone–patellar tendon–bone allografts. Am J Sports Med 22:328–333PubMed
61.
go back to reference Flahiff CM, Brooks AT, Hollis JM, Vander Schilden JL, Nicholas RW (1995) Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 23:354–358PubMed Flahiff CM, Brooks AT, Hollis JM, Vander Schilden JL, Nicholas RW (1995) Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 23:354–358PubMed
62.
go back to reference Narici MV, Maffulli N, Maganaris CN (2008) Ageing of human muscles and tendons. Disabil Rehabil 30:1548–1554PubMed Narici MV, Maffulli N, Maganaris CN (2008) Ageing of human muscles and tendons. Disabil Rehabil 30:1548–1554PubMed
63.
go back to reference Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521(Pt 1):307–313PubMed Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521(Pt 1):307–313PubMed
64.
go back to reference Reeves ND, Narici MV, Maganaris CN (2003) Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve 28:74–81PubMed Reeves ND, Narici MV, Maganaris CN (2003) Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve 28:74–81PubMed
65.
go back to reference Narici MV, Maganaris CN (2006) Adaptability of elderly human muscles and tendons to increased loading. J Anat 208:433–443PubMed Narici MV, Maganaris CN (2006) Adaptability of elderly human muscles and tendons to increased loading. J Anat 208:433–443PubMed
66.
go back to reference Nevitt MC, Cummings SR, Kidd S, Black D (1989) Risk factors for recurrent nonsyncopal falls. JAMA 261:2663–2668PubMed Nevitt MC, Cummings SR, Kidd S, Black D (1989) Risk factors for recurrent nonsyncopal falls. JAMA 261:2663–2668PubMed
67.
go back to reference Moreland JD, Richardson JA, Goldsmith CH, Clase CM (2004) Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 52:1121–1129PubMed Moreland JD, Richardson JA, Goldsmith CH, Clase CM (2004) Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 52:1121–1129PubMed
68.
go back to reference Lanza IR, Towse TF, Caldwell GE, Wigmore DM, Kent-Braun JA (2003) Effects of age on human muscle torque, velocity, and power in two muscle groups. J Appl Physiol 95:2361–2369PubMed Lanza IR, Towse TF, Caldwell GE, Wigmore DM, Kent-Braun JA (2003) Effects of age on human muscle torque, velocity, and power in two muscle groups. J Appl Physiol 95:2361–2369PubMed
69.
go back to reference Petrella JK, Kim JS, Tuggle SC, Hall SR, Bamman MM (2005) Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol 98:211–220PubMed Petrella JK, Kim JS, Tuggle SC, Hall SR, Bamman MM (2005) Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol 98:211–220PubMed
70.
go back to reference Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99:1050–1055PubMed Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99:1050–1055PubMed
71.
go back to reference Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T (2007) Age-related differences in the properties of the plantar flexor muscles and tendons. Med Sci Sports Exerc 39:541–547PubMed Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T (2007) Age-related differences in the properties of the plantar flexor muscles and tendons. Med Sci Sports Exerc 39:541–547PubMed
72.
go back to reference Johnson ME, Mille ML, Martinez KM, Crombie G, Rogers MW (2004) Age-related changes in hip abductor and adductor joint torques. Arch Phys Med Rehabil 85:593–597PubMed Johnson ME, Mille ML, Martinez KM, Crombie G, Rogers MW (2004) Age-related changes in hip abductor and adductor joint torques. Arch Phys Med Rehabil 85:593–597PubMed
73.
go back to reference Dean JC, Kuo AD, Alexander NB (2004) Age-related changes in maximal hip strength and movement speed. J Gerontol Ser A Biol Sci Med Sci 59:286–292 Dean JC, Kuo AD, Alexander NB (2004) Age-related changes in maximal hip strength and movement speed. J Gerontol Ser A Biol Sci Med Sci 59:286–292
74.
go back to reference Larsson L, Grimby G, Karlsson J (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 46:451–456PubMed Larsson L, Grimby G, Karlsson J (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 46:451–456PubMed
75.
go back to reference Murray MP, Duthie EH Jr, Gambert SR, Sepic SB, Mollinger LA (1985) Age-related differences in knee muscle strength in normal women. J Gerontol 40:275–280PubMed Murray MP, Duthie EH Jr, Gambert SR, Sepic SB, Mollinger LA (1985) Age-related differences in knee muscle strength in normal women. J Gerontol 40:275–280PubMed
76.
go back to reference Murray MP, Gardner GM, Mollinger LA, Sepic SB (1980) Strength of isometric and isokinetic contractions: knee muscles of men aged 20 to 86. Phys Ther 60:412–419PubMed Murray MP, Gardner GM, Mollinger LA, Sepic SB (1980) Strength of isometric and isokinetic contractions: knee muscles of men aged 20 to 86. Phys Ther 60:412–419PubMed
77.
go back to reference Young A, Stokes M, Crowe M (1984) Size and strength of the quadriceps muscles of old and young women. Eur J Clin Invest 14:282–287PubMed Young A, Stokes M, Crowe M (1984) Size and strength of the quadriceps muscles of old and young women. Eur J Clin Invest 14:282–287PubMed
78.
go back to reference Young A, Stokes M, Crowe M (1985) The size and strength of the quadriceps muscles of old and young men. Clin Physiol 5:145–154PubMed Young A, Stokes M, Crowe M (1985) The size and strength of the quadriceps muscles of old and young men. Clin Physiol 5:145–154PubMed
79.
go back to reference Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone Singh MA (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol Ser A Biol Sci Med Sci 56:B209–217 Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone Singh MA (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol Ser A Biol Sci Med Sci 56:B209–217
80.
go back to reference Aniansson A, Hedberg M, Henning GB, Grimby G (1986) Muscle morphology, enzymatic activity, and muscle strength in elderly men: a follow-up study. Muscle Nerve 9:585–591PubMed Aniansson A, Hedberg M, Henning GB, Grimby G (1986) Muscle morphology, enzymatic activity, and muscle strength in elderly men: a follow-up study. Muscle Nerve 9:585–591PubMed
81.
go back to reference Greig CA, Botella J, Young A (1993) The quadriceps strength of healthy elderly people remeasured after eight years. Muscle Nerve 16:6–10PubMed Greig CA, Botella J, Young A (1993) The quadriceps strength of healthy elderly people remeasured after eight years. Muscle Nerve 16:6–10PubMed
82.
go back to reference Overend TJ, Cunningham DA, Paterson DH, Lefcoe MS (1992) Thigh composition in young and elderly men determined by computed tomography. Clin Physiol 12:629–640PubMed Overend TJ, Cunningham DA, Paterson DH, Lefcoe MS (1992) Thigh composition in young and elderly men determined by computed tomography. Clin Physiol 12:629–640PubMed
83.
go back to reference Visser M, Kritchevsky S, Goodpaster B, Newman A, Nevitt M, Stamm E, Harris T (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70–79: the health aging and body composition study. J Am Geriat Soc 50:897–905PubMed Visser M, Kritchevsky S, Goodpaster B, Newman A, Nevitt M, Stamm E, Harris T (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70–79: the health aging and body composition study. J Am Geriat Soc 50:897–905PubMed
84.
go back to reference Thelen DG, Muriuki M, James J, Schultz AB, Ashton-Miller JA, Alexander NB (2000) Muscle activities used by young and old adults when stepping to regain balance during a forward fall. J Electromyogr Kinesiol 10:93–101PubMed Thelen DG, Muriuki M, James J, Schultz AB, Ashton-Miller JA, Alexander NB (2000) Muscle activities used by young and old adults when stepping to regain balance during a forward fall. J Electromyogr Kinesiol 10:93–101PubMed
85.
go back to reference Thelen DG, Wojcik LA, Schultz AB, Ashton-Miller JA, Alexander NB (1997) Age differences in using a rapid step to regain balance during a forward fall. J Gerontol Ser A Biol Sci Med Sci 52:M8–13 Thelen DG, Wojcik LA, Schultz AB, Ashton-Miller JA, Alexander NB (1997) Age differences in using a rapid step to regain balance during a forward fall. J Gerontol Ser A Biol Sci Med Sci 52:M8–13
86.
go back to reference Wojcik LA, Thelen DG, Schultz AB, Ashton-Miller JA, Alexander NB (1999) Age and gender differences in single-step recovery from a forward fall. J Gerontol Ser A Biol Sci Med Sci 54:M44–50 Wojcik LA, Thelen DG, Schultz AB, Ashton-Miller JA, Alexander NB (1999) Age and gender differences in single-step recovery from a forward fall. J Gerontol Ser A Biol Sci Med Sci 54:M44–50
87.
go back to reference Wojcik LA, Thelen DG, Schultz AB, Ashton-Miller JA, Alexander NB (2001) Age and gender differences in peak lower extremity joint torques and ranges of motion used during single-step balance recovery from a forward fall. J Biomech 34:67–73PubMed Wojcik LA, Thelen DG, Schultz AB, Ashton-Miller JA, Alexander NB (2001) Age and gender differences in peak lower extremity joint torques and ranges of motion used during single-step balance recovery from a forward fall. J Biomech 34:67–73PubMed
88.
go back to reference Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol Ser A Biol Sci Med Sci 60:324–333 Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol Ser A Biol Sci Med Sci 60:324–333
89.
go back to reference Lang TF, Cauley J, Tylavsky F, Bauer D, Cummings S, Harris TB (2009) Computed tomography measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: The Health, Aging and Body Composition Study. J Bone Miner Res doi:10.1359/jbmr.090807 Lang TF, Cauley J, Tylavsky F, Bauer D, Cummings S, Harris TB (2009) Computed tomography measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: The Health, Aging and Body Composition Study. J Bone Miner Res doi:10.​1359/​jbmr.​090807
90.
go back to reference Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ (1988) Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 64:1038–1044PubMed Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ (1988) Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 64:1038–1044PubMed
91.
go back to reference Charette SL, McEvoy L, Pyka G, Snow-Harter C, Guido D, Wiswell RA, Marcus R (1991) Muscle hypertrophy response to resistance training in older women. J Appl Physiol 70:1912–1916PubMed Charette SL, McEvoy L, Pyka G, Snow-Harter C, Guido D, Wiswell RA, Marcus R (1991) Muscle hypertrophy response to resistance training in older women. J Appl Physiol 70:1912–1916PubMed
92.
go back to reference Henwood TR, Taaffe DR (2008) Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. J Gerontol A Biol Sci Med Sci 63:751–758PubMed Henwood TR, Taaffe DR (2008) Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. J Gerontol A Biol Sci Med Sci 63:751–758PubMed
93.
go back to reference Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ (1990) High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263:3029–3034PubMed Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ (1990) High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263:3029–3034PubMed
94.
go back to reference Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330:1769–1775PubMed Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330:1769–1775PubMed
95.
go back to reference Morley JE, Haren MT, Kim MJ, Kevorkian R, Perry HM 3rd (2005) Testosterone, aging and quality of life. J Endocrinol Invest 28:76–80PubMed Morley JE, Haren MT, Kim MJ, Kevorkian R, Perry HM 3rd (2005) Testosterone, aging and quality of life. J Endocrinol Invest 28:76–80PubMed
96.
go back to reference Borst SE (2004) Interventions for sarcopenia and muscle weakness in older people. Age Ageing 33:548–555PubMed Borst SE (2004) Interventions for sarcopenia and muscle weakness in older people. Age Ageing 33:548–555PubMed
97.
go back to reference Wang C, Swerdloff RS, Iranmanesh A, Dobs A, Snyder PJ, Cunningham G, Matsumoto AM, Weber T, Berman N (2000) Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab 85:2839–2853PubMed Wang C, Swerdloff RS, Iranmanesh A, Dobs A, Snyder PJ, Cunningham G, Matsumoto AM, Weber T, Berman N (2000) Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab 85:2839–2853PubMed
98.
go back to reference Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, Lee WP, Bunnell TJ, Casaburi R (1997) Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab 82:407–413PubMed Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, Lee WP, Bunnell TJ, Casaburi R (1997) Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab 82:407–413PubMed
99.
go back to reference Brodsky IG, Balagopal P, Nair KS (1996) Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men—a clinical research center study. J Clin Endocrinol Metab 81:3469–3475PubMed Brodsky IG, Balagopal P, Nair KS (1996) Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men—a clinical research center study. J Clin Endocrinol Metab 81:3469–3475PubMed
100.
go back to reference Fuh VL, Bach MA (1998) Growth hormone secretagogues: mechanism of action and use in aging. Growth Horm IGF Res 8:13–20PubMed Fuh VL, Bach MA (1998) Growth hormone secretagogues: mechanism of action and use in aging. Growth Horm IGF Res 8:13–20PubMed
101.
go back to reference Giovannini S, Marzetti E, Borst SE, Leeuwenburgh C (2008) Modulation of GH/IGF-1 axis: potential strategies to counteract sarcopenia in older adults. Mech Ageing Dev 129:593–601PubMed Giovannini S, Marzetti E, Borst SE, Leeuwenburgh C (2008) Modulation of GH/IGF-1 axis: potential strategies to counteract sarcopenia in older adults. Mech Ageing Dev 129:593–601PubMed
102.
go back to reference Boonen S, Rosen C, Bouillon R, Sommer A, McKay M, Rosen D, Adams S, Broos P, Lenaerts J, Raus J, Vanderschueren D, Geusens P (2002) Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab 87:1593–1599PubMed Boonen S, Rosen C, Bouillon R, Sommer A, McKay M, Rosen D, Adams S, Broos P, Lenaerts J, Raus J, Vanderschueren D, Geusens P (2002) Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab 87:1593–1599PubMed
103.
go back to reference Bradley L, Yaworsky PJ, Walsh FS (2008) Myostatin as a therapeutic target for musculoskeletal disease. Cell Mol Life Sci 65:2119–2124PubMed Bradley L, Yaworsky PJ, Walsh FS (2008) Myostatin as a therapeutic target for musculoskeletal disease. Cell Mol Life Sci 65:2119–2124PubMed
104.
go back to reference Tobin JF, Celeste AJ (2005) Myostatin, a negative regulator of muscle mass: implications for muscle degenerative diseases. Curr Opin Pharmacol 5:328–332PubMed Tobin JF, Celeste AJ (2005) Myostatin, a negative regulator of muscle mass: implications for muscle degenerative diseases. Curr Opin Pharmacol 5:328–332PubMed
105.
go back to reference Walsh FS, Celeste AJ (2005) Myostatin: a modulator of skeletal-muscle stem cells. Biochem Soc Trans 33:1513–1517PubMed Walsh FS, Celeste AJ (2005) Myostatin: a modulator of skeletal-muscle stem cells. Biochem Soc Trans 33:1513–1517PubMed
106.
go back to reference Gao W, Reiser PJ, Coss CC, Phelps MA, Kearbey JD, Miller DD, Dalton JT (2005) Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in orchidectomized rats. Endocrinology 146:4887–4897PubMed Gao W, Reiser PJ, Coss CC, Phelps MA, Kearbey JD, Miller DD, Dalton JT (2005) Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in orchidectomized rats. Endocrinology 146:4887–4897PubMed
107.
go back to reference Suominen H (2006) Muscle training for bone strength. Aging Clin Exp Res 18:85–93PubMed Suominen H (2006) Muscle training for bone strength. Aging Clin Exp Res 18:85–93PubMed
108.
go back to reference Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9PubMed Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9PubMed
109.
go back to reference Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280PubMed Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280PubMed
110.
go back to reference Robling AG, Hinant FM, Burr DB, Turner CH (2002) Shorter, more frequent mechanical loading sessions enhance bone mass. Med Sci Sports Exerc 34:196–202PubMed Robling AG, Hinant FM, Burr DB, Turner CH (2002) Shorter, more frequent mechanical loading sessions enhance bone mass. Med Sci Sports Exerc 34:196–202PubMed
111.
go back to reference Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J (2005) Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 20:809–816PubMed Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J (2005) Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 20:809–816PubMed
112.
go back to reference Albanese CV, Diessel E, Genant HK (2003) Clinical applications of body composition measurements using DXA. J Clin Densitom 6:75–85PubMed Albanese CV, Diessel E, Genant HK (2003) Clinical applications of body composition measurements using DXA. J Clin Densitom 6:75–85PubMed
113.
go back to reference Pichard C, Genton L, Jolliet P (2000) Measuring body composition: a landmark of quality control for nutritional support services. Curr Opin Clin Nutr Metab Care 3:281–284PubMed Pichard C, Genton L, Jolliet P (2000) Measuring body composition: a landmark of quality control for nutritional support services. Curr Opin Clin Nutr Metab Care 3:281–284PubMed
114.
go back to reference Plank LD (2005) Dual-energy X-ray absorptiometry and body composition. Curr Opin Clin Nutr Metab Care 8:305–309PubMed Plank LD (2005) Dual-energy X-ray absorptiometry and body composition. Curr Opin Clin Nutr Metab Care 8:305–309PubMed
115.
go back to reference Wells JC, Fewtrell MS (2006) Measuring body composition. Arch Dis Child 91:612–617PubMed Wells JC, Fewtrell MS (2006) Measuring body composition. Arch Dis Child 91:612–617PubMed
116.
go back to reference Woodrow G (2007) Body composition analysis techniques in adult and pediatric patients: how reliable are they? How useful are they clinically? Perit Dial Int 27(Suppl 2):S245–249PubMed Woodrow G (2007) Body composition analysis techniques in adult and pediatric patients: how reliable are they? How useful are they clinically? Perit Dial Int 27(Suppl 2):S245–249PubMed
117.
go back to reference Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol 90:2157–2165PubMed Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol 90:2157–2165PubMed
118.
go back to reference Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89:104–110PubMed Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89:104–110PubMed
119.
go back to reference Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol Ser A Biol Sci Med Sci 61:1059–1064 Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol Ser A Biol Sci Med Sci 61:1059–1064
120.
go back to reference Taaffe DR, Henwood TR, Nalls MA, Walker DG, Lang TF, Harris TB (2008) Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults. Gerontology 55:217–223PubMed Taaffe DR, Henwood TR, Nalls MA, Walker DG, Lang TF, Harris TB (2008) Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults. Gerontology 55:217–223PubMed
121.
go back to reference Visser M, Deeg DJ, Lips P, Harris TB, Bouter LM (2000) Skeletal muscle mass and muscle strength in relation to lower-extremity performance in older men and women. J Am Geriatr Soc 48:381–386PubMed Visser M, Deeg DJ, Lips P, Harris TB, Bouter LM (2000) Skeletal muscle mass and muscle strength in relation to lower-extremity performance in older men and women. J Am Geriatr Soc 48:381–386PubMed
122.
go back to reference Boesch C, Machann J, Vermathen P, Schick F (2006) Role of proton MR for the study of muscle lipid metabolism. NMR Biomed 19:968–988PubMed Boesch C, Machann J, Vermathen P, Schick F (2006) Role of proton MR for the study of muscle lipid metabolism. NMR Biomed 19:968–988PubMed
123.
go back to reference Machann J, Stefan N, Schick F (2008) (1)H MR spectroscopy of skeletal muscle, liver and bone marrow. Eur J Radiol 67:275–284PubMed Machann J, Stefan N, Schick F (2008) (1)H MR spectroscopy of skeletal muscle, liver and bone marrow. Eur J Radiol 67:275–284PubMed
124.
go back to reference Torriani M (2007) Measuring muscle lipids with 1H-MR spectroscopy. Skeletal Radiol 36:607–608PubMed Torriani M (2007) Measuring muscle lipids with 1H-MR spectroscopy. Skeletal Radiol 36:607–608PubMed
125.
go back to reference Weis J, Courivaud F, Hansen MS, Johansson L, Ribe LR, Ahlstrom H (2005) Lipid content in the musculature of the lower leg: evaluation with high-resolution spectroscopic imaging. Magn Reson Med 54:152–158PubMed Weis J, Courivaud F, Hansen MS, Johansson L, Ribe LR, Ahlstrom H (2005) Lipid content in the musculature of the lower leg: evaluation with high-resolution spectroscopic imaging. Magn Reson Med 54:152–158PubMed
126.
go back to reference Weis J, Johansson L, Ortiz-Nieto F, Ahlstrom H (2008) Assessment of lipids in skeletal muscle by high-resolution spectroscopic imaging using fat as the internal standard: comparison with water referenced spectroscopy. Magn Reson Med 59:1259–1265PubMed Weis J, Johansson L, Ortiz-Nieto F, Ahlstrom H (2008) Assessment of lipids in skeletal muscle by high-resolution spectroscopic imaging using fat as the internal standard: comparison with water referenced spectroscopy. Magn Reson Med 59:1259–1265PubMed
127.
go back to reference Wells GD, Noseworthy MD, Hamilton J, Tarnopolski M, Tein I (2008) Skeletal muscle metabolic dysfunction in obesity and metabolic syndrome. Can J Neurol Sci 35:31–40PubMed Wells GD, Noseworthy MD, Hamilton J, Tarnopolski M, Tein I (2008) Skeletal muscle metabolic dysfunction in obesity and metabolic syndrome. Can J Neurol Sci 35:31–40PubMed
128.
go back to reference Bendahan D, Mattei JP, Guis S, Kozak-Ribbens G, Cozzone PJ (2006) Non-invasive investigation of muscle function using 31P magnetic resonance spectroscopy and 1H MR imaging. Rev Neurol (Paris) 162:467–484 Bendahan D, Mattei JP, Guis S, Kozak-Ribbens G, Cozzone PJ (2006) Non-invasive investigation of muscle function using 31P magnetic resonance spectroscopy and 1H MR imaging. Rev Neurol (Paris) 162:467–484
129.
go back to reference Boesch C (2007) Musculoskeletal spectroscopy. J Magn Reson Imaging 25:321–338PubMed Boesch C (2007) Musculoskeletal spectroscopy. J Magn Reson Imaging 25:321–338PubMed
130.
go back to reference Brosseau OE, Mahdjoub R, Seurin MJ, Thiriet P, Gozal D, Briguet A (2003) Kinetics of anaerobic metabolism in human skeletal muscle: influence of repetitive high-intensity exercise on sedentary dominant and non-dominant forearm. A 31P NMR study. Biochimie 85:885–890PubMed Brosseau OE, Mahdjoub R, Seurin MJ, Thiriet P, Gozal D, Briguet A (2003) Kinetics of anaerobic metabolism in human skeletal muscle: influence of repetitive high-intensity exercise on sedentary dominant and non-dominant forearm. A 31P NMR study. Biochimie 85:885–890PubMed
131.
go back to reference Lanza IR, Befroy DE, Kent-Braun JA (2005) Age-related changes in ATP-producing pathways in human skeletal muscle in vivo. J Appl Physiol 99:1736–1744PubMed Lanza IR, Befroy DE, Kent-Braun JA (2005) Age-related changes in ATP-producing pathways in human skeletal muscle in vivo. J Appl Physiol 99:1736–1744PubMed
132.
go back to reference Lanza IR, Wigmore DM, Befroy DE, Kent-Braun JA (2006) In vivo ATP production during free-flow and ischaemic muscle contractions in humans. J Physiol 577:353–367PubMed Lanza IR, Wigmore DM, Befroy DE, Kent-Braun JA (2006) In vivo ATP production during free-flow and ischaemic muscle contractions in humans. J Physiol 577:353–367PubMed
133.
go back to reference Mairiang E, Hanpanich P, Sriboonlue P (2004) In vivo 31P-MRS assessment of muscle-pH, cytosolic-[Mg2+] and phosphorylation potential after supplementing hypokaliuric renal stone patients with potassium and magnesium salts. Magn Reson Imaging 22:715–719PubMed Mairiang E, Hanpanich P, Sriboonlue P (2004) In vivo 31P-MRS assessment of muscle-pH, cytosolic-[Mg2+] and phosphorylation potential after supplementing hypokaliuric renal stone patients with potassium and magnesium salts. Magn Reson Imaging 22:715–719PubMed
134.
go back to reference Taylor JH, Beilman GJ, Conroy MJ, Mulier KE, Myers D, Gruessner A, Hammer BE (2004) Tissue energetics as measured by nuclear magnetic resonance spectroscopy during hemorrhagic shock. Shock 21:58–64PubMed Taylor JH, Beilman GJ, Conroy MJ, Mulier KE, Myers D, Gruessner A, Hammer BE (2004) Tissue energetics as measured by nuclear magnetic resonance spectroscopy during hemorrhagic shock. Shock 21:58–64PubMed
135.
go back to reference Delmas-Beauvieux MC, Quesson B, Thiaudiere E, Gallis JL, Canioni P, Gin H (1999) 13C nuclear magnetic resonance study of glycogen resynthesis in muscle after glycogen-depleting exercise in healthy men receiving an infusion of lipid emulsion. Diabetes 48:327–333PubMed Delmas-Beauvieux MC, Quesson B, Thiaudiere E, Gallis JL, Canioni P, Gin H (1999) 13C nuclear magnetic resonance study of glycogen resynthesis in muscle after glycogen-depleting exercise in healthy men receiving an infusion of lipid emulsion. Diabetes 48:327–333PubMed
136.
go back to reference Hunter GR, Newcomer BR, Larson-Meyer DE, Bamman MM, Weinsier RL (2001) Muscle metabolic economy is inversely related to exercise intensity and type II myofiber distribution. Muscle Nerve 24:654–661PubMed Hunter GR, Newcomer BR, Larson-Meyer DE, Bamman MM, Weinsier RL (2001) Muscle metabolic economy is inversely related to exercise intensity and type II myofiber distribution. Muscle Nerve 24:654–661PubMed
137.
go back to reference Krssak M, Petersen KF, Bergeron R, Price T, Laurent D, Rothman DL, Roden M, Shulman GI (2000) Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a 13C and 1H nuclear magnetic resonance spectroscopy study. J Clin Endocrinol Metab 85:748–754PubMed Krssak M, Petersen KF, Bergeron R, Price T, Laurent D, Rothman DL, Roden M, Shulman GI (2000) Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a 13C and 1H nuclear magnetic resonance spectroscopy study. J Clin Endocrinol Metab 85:748–754PubMed
138.
go back to reference Meynial-Denis D, Miri A, Bielicki G, Mignon M, Renou JP, Grizard J (2005) Insulin-dependent glycogen synthesis is delayed in onset in the skeletal muscle of food-deprived aged rats. J Nutr Biochem 16:150–154PubMed Meynial-Denis D, Miri A, Bielicki G, Mignon M, Renou JP, Grizard J (2005) Insulin-dependent glycogen synthesis is delayed in onset in the skeletal muscle of food-deprived aged rats. J Nutr Biochem 16:150–154PubMed
139.
go back to reference Rico-Sanz J, Zehnder M, Buchli R, Dambach M, Boutellier U (1999) Muscle glycogen degradation during simulation of a fatiguing soccer match in elite soccer players examined noninvasively by 13C-MRS. Med Sci Sports Exerc 31:1587–1593PubMed Rico-Sanz J, Zehnder M, Buchli R, Dambach M, Boutellier U (1999) Muscle glycogen degradation during simulation of a fatiguing soccer match in elite soccer players examined noninvasively by 13C-MRS. Med Sci Sports Exerc 31:1587–1593PubMed
140.
go back to reference Rico-Sanz J, Zehnder M, Buchli R, Kuhne G, Boutellier U (1999) Noninvasive measurement of muscle high-energy phosphates and glycogen concentrations in elite soccer players by 31P- and 13C-MRS. Med Sci Sports Exerc 31:1580–1586PubMed Rico-Sanz J, Zehnder M, Buchli R, Kuhne G, Boutellier U (1999) Noninvasive measurement of muscle high-energy phosphates and glycogen concentrations in elite soccer players by 31P- and 13C-MRS. Med Sci Sports Exerc 31:1580–1586PubMed
141.
go back to reference Rotman S, Slotboom J, Kreis R, Boesch C, Jequier E (2000) Muscle glycogen recovery after exercise measured by 13C-magnetic resonance spectroscopy in humans: effect of nutritional solutions. MAGMA 11:114–121PubMed Rotman S, Slotboom J, Kreis R, Boesch C, Jequier E (2000) Muscle glycogen recovery after exercise measured by 13C-magnetic resonance spectroscopy in humans: effect of nutritional solutions. MAGMA 11:114–121PubMed
142.
go back to reference Shulman RG, Rothman DL (2001) 13C NMR of intermediary metabolism: implications for systemic physiology. Annu Rev Physiol 63:15–48PubMed Shulman RG, Rothman DL (2001) 13C NMR of intermediary metabolism: implications for systemic physiology. Annu Rev Physiol 63:15–48PubMed
143.
go back to reference Van Den Bergh AJ, Tack CJ, Van Den Boogert HJ, Vervoort G, Smits P, Heerschap A (2000) Assessment of human muscle glycogen synthesis and total glucose content by in vivo 13C MRS. Eur J Clin Invest 30:122–128 Van Den Bergh AJ, Tack CJ, Van Den Boogert HJ, Vervoort G, Smits P, Heerschap A (2000) Assessment of human muscle glycogen synthesis and total glucose content by in vivo 13C MRS. Eur J Clin Invest 30:122–128
144.
go back to reference Bertoldo A, Pencek RR, Azuma K, Price JC, Kelley C, Cobelli C, Kelley DE (2006) Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle. Diabetes 55:3028–3037PubMed Bertoldo A, Pencek RR, Azuma K, Price JC, Kelley C, Cobelli C, Kelley DE (2006) Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle. Diabetes 55:3028–3037PubMed
145.
go back to reference Bertoldo A, Price J, Mathis C, Mason S, Holt D, Kelley C, Cobelli C, Kelley DE (2005) Quantitative assessment of glucose transport in human skeletal muscle: dynamic positron emission tomography imaging of [O-methyl-11C]3-O-methyl-d-glucose. J Clin Endocrinol Metab 90:1752–1759PubMed Bertoldo A, Price J, Mathis C, Mason S, Holt D, Kelley C, Cobelli C, Kelley DE (2005) Quantitative assessment of glucose transport in human skeletal muscle: dynamic positron emission tomography imaging of [O-methyl-11C]3-O-methyl-d-glucose. J Clin Endocrinol Metab 90:1752–1759PubMed
146.
go back to reference Carter EA, Yu YM, Alpert NM, Bonab AA, Tompkins RG, Fischman AJ (1999) Measurement of muscle protein synthesis by positron emission tomography with l-[methyl-11C]methionine: effects of transamination and transmethylation. J Trauma 47:341–345PubMed Carter EA, Yu YM, Alpert NM, Bonab AA, Tompkins RG, Fischman AJ (1999) Measurement of muscle protein synthesis by positron emission tomography with l-[methyl-11C]methionine: effects of transamination and transmethylation. J Trauma 47:341–345PubMed
147.
go back to reference Fischman AJ, Yu YM, Livni E, Babich JW, Young VR, Alpert NM, Tompkins RG (1998) Muscle protein synthesis by positron-emission tomography with l-[methyl-11C]methionine in adult humans. Proc Natl Acad Sci U S A 95:12793–12798PubMed Fischman AJ, Yu YM, Livni E, Babich JW, Young VR, Alpert NM, Tompkins RG (1998) Muscle protein synthesis by positron-emission tomography with l-[methyl-11C]methionine in adult humans. Proc Natl Acad Sci U S A 95:12793–12798PubMed
148.
go back to reference Hsu H, Yu YM, Babich JW, Burke JF, Livni E, Tompkins RG, Young VR, Alpert NM, Fischman AJ (1996) Measurement of muscle protein synthesis by positron emission tomography with l-[methyl-11C]methionine. Proc Natl Acad Sci U S A 93:1841–1846PubMed Hsu H, Yu YM, Babich JW, Burke JF, Livni E, Tompkins RG, Young VR, Alpert NM, Fischman AJ (1996) Measurement of muscle protein synthesis by positron emission tomography with l-[methyl-11C]methionine. Proc Natl Acad Sci U S A 93:1841–1846PubMed
149.
go back to reference Solerte SB, Gazzaruso C, Bonacasa R, Rondanelli M, Zamboni M, Basso C, Locatelli E, Schifino N, Giustina A, Fioravanti M (2008) Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am J Cardiol 101:69E–77EPubMed Solerte SB, Gazzaruso C, Bonacasa R, Rondanelli M, Zamboni M, Basso C, Locatelli E, Schifino N, Giustina A, Fioravanti M (2008) Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am J Cardiol 101:69E–77EPubMed
150.
go back to reference Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D (2000) Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol 89:143–152PubMed Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D (2000) Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol 89:143–152PubMed
151.
go back to reference Trappe S, Godard M, Gallagher P, Carroll C, Rowden G, Porter D (2001) Resistance training improves single muscle fiber contractile function in older women. Am J Physiol Cell Physiol 281:C398–406PubMed Trappe S, Godard M, Gallagher P, Carroll C, Rowden G, Porter D (2001) Resistance training improves single muscle fiber contractile function in older women. Am J Physiol Cell Physiol 281:C398–406PubMed
152.
go back to reference Slivka D, Raue U, Hollon C, Minchev K, Trappe S (2008) Single muscle fiber adaptations to resistance training in old (>80 yr) men: evidence for limited skeletal muscle plasticity. Am J Physiol Regul Integr Comp Physiol 295:R273–280PubMed Slivka D, Raue U, Hollon C, Minchev K, Trappe S (2008) Single muscle fiber adaptations to resistance training in old (>80 yr) men: evidence for limited skeletal muscle plasticity. Am J Physiol Regul Integr Comp Physiol 295:R273–280PubMed
153.
go back to reference Kryger AI, Andersen JL (2007) Resistance training in the oldest old: consequences for muscle strength, fiber types, fiber size, and MHC isoforms. Scand J Med Sci Sports 17:422–430PubMedCrossRef Kryger AI, Andersen JL (2007) Resistance training in the oldest old: consequences for muscle strength, fiber types, fiber size, and MHC isoforms. Scand J Med Sci Sports 17:422–430PubMedCrossRef
154.
go back to reference Frontera WR, Hughes VA, Krivickas LS, Kim SK, Foldvari M, Roubenoff R (2003) Strength training in older women: early and late changes in whole muscle and single cells. Muscle Nerve 28:601–608PubMed Frontera WR, Hughes VA, Krivickas LS, Kim SK, Foldvari M, Roubenoff R (2003) Strength training in older women: early and late changes in whole muscle and single cells. Muscle Nerve 28:601–608PubMed
155.
go back to reference Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE (2003) Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol Ser A Biol Sci Med Sci 58:618–625 Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE (2003) Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol Ser A Biol Sci Med Sci 58:618–625
Metadata
Title
Sarcopenia: etiology, clinical consequences, intervention, and assessment
Authors
T. Lang
T. Streeper
P. Cawthon
K. Baldwin
D. R. Taaffe
T. B. Harris
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 4/2010
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-009-1059-y

Other articles of this Issue 4/2010

Osteoporosis International 4/2010 Go to the issue