Skip to main content
Top
Published in: Osteoporosis International 1/2010

01-01-2010 | Original Article

High bone turnover and accumulation of osteoid in patients with neurofibromatosis 1

Authors: S. Seitz, C. Schnabel, B. Busse, H. U. Schmidt, F. T. Beil, R. E. Friedrich, T. Schinke, V. F. Mautner, M. Amling

Published in: Osteoporosis International | Issue 1/2010

Login to get access

Abstract

Summary

Although it is known that neurofibromatosis 1 (NF1) patients suffer from vitamin D deficiency and display decreased bone mineral density (BMD), a systematic clinical and histomorphometrical analysis is absent. Our data demonstrate that NF1 patients display high bone turnover and accumulation of osteoid and that supplementation of vitamin D has a beneficial effect on their BMD.

Introduction

Neurofibromatosis 1 results in a wide range of clinical manifestations, including decreased BMD. Although it has been reported that NF1 patients have decreased vitamin D serum levels, the manifestation of the disease at the bone tissue level has rarely been analyzed.

Methods

Thus, we performed a clinical evaluation of 14 NF1 patients in comparison to age- and sex-matched control individuals. The analysis included dual X-ray absorptiometry osteodensitometry, laboratory parameters, histomorphometric and quantitative backscattered electron imaging (qBEI) analyses of undecalcified bone biopsies.

Results

NF1 patients display significantly lower 25-(OH)-cholecalciferol serum levels and decreased BMD compared to control individuals. Histomorphometric analysis did not only reveal a reduced trabecular bone volume in biopsies from NF1 patients, but also a significantly increased osteoid volume and increased numbers of osteoblasts and osteoclasts. Moreover, qBEI analysis revealed a significant decrease of the calcium content in biopsies from NF1 patients. To address the question whether a normalization of calcium homeostasis improves BMD in NF1 patients, we treated four patients with cholecalciferol for 1 year, which resulted in a significant increase of BMD.

Conclusion

Taken together, our data provide the first complete histomorphometric analysis from NF1 patients. Moreover, they suggest that low vitamin D levels significantly contribute to the skeletal defects associated with the disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rasmussen SA, Friedman JM (2000) NF1 gene and neurofibromatosis 1. Am J Epidemiol 151:33–40PubMed Rasmussen SA, Friedman JM (2000) NF1 gene and neurofibromatosis 1. Am J Epidemiol 151:33–40PubMed
2.
go back to reference Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604CrossRefPubMed Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604CrossRefPubMed
3.
go back to reference Ferner RE, Huson SM, Thomas N et al (2007) Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44:81–88CrossRefPubMed Ferner RE, Huson SM, Thomas N et al (2007) Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44:81–88CrossRefPubMed
4.
go back to reference Friedman JM (2002) Neurofibromatosis 1: clinical manifestations and diagnostic criteria. J Child Neurol 17:548–554CrossRefPubMed Friedman JM (2002) Neurofibromatosis 1: clinical manifestations and diagnostic criteria. J Child Neurol 17:548–554CrossRefPubMed
5.
go back to reference Lammert M, Kappler M, Mautner VF et al (2005) Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int 16:1161–1166CrossRefPubMed Lammert M, Kappler M, Mautner VF et al (2005) Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int 16:1161–1166CrossRefPubMed
6.
go back to reference Kuorilehto T, Poyhonen M, Bloigu R et al (2005) Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int 16:928–936CrossRefPubMed Kuorilehto T, Poyhonen M, Bloigu R et al (2005) Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int 16:928–936CrossRefPubMed
7.
go back to reference Illes T, Halmai V, de Jonge T et al (2001) Decreased bone mineral density in neurofibromatosis-1 patients with spinal deformities. Osteoporos Int 12:823–827CrossRefPubMed Illes T, Halmai V, de Jonge T et al (2001) Decreased bone mineral density in neurofibromatosis-1 patients with spinal deformities. Osteoporos Int 12:823–827CrossRefPubMed
8.
go back to reference Stevenson DA, Moyer-Mileur LJ, Murray M et al (2007) Bone mineral density in children and adolescents with neurofibromatosis type 1. J Pediatr 150:83–88CrossRefPubMed Stevenson DA, Moyer-Mileur LJ, Murray M et al (2007) Bone mineral density in children and adolescents with neurofibromatosis type 1. J Pediatr 150:83–88CrossRefPubMed
9.
go back to reference Kuorilehto T, Ekholm E, Nissinen M et al (2006) NF1 gene expression in mouse fracture healing and in experimental rat pseudarthrosis. J Histochem Cytochem 54:363–370CrossRefPubMed Kuorilehto T, Ekholm E, Nissinen M et al (2006) NF1 gene expression in mouse fracture healing and in experimental rat pseudarthrosis. J Histochem Cytochem 54:363–370CrossRefPubMed
10.
go back to reference Yu X, Chen S, Potter OL et al (2005) Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone 36:793–802CrossRefPubMed Yu X, Chen S, Potter OL et al (2005) Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone 36:793–802CrossRefPubMed
11.
go back to reference Elefteriou F, Benson MD, Sowa H et al (2006) ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 4:441–451CrossRefPubMed Elefteriou F, Benson MD, Sowa H et al (2006) ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 4:441–451CrossRefPubMed
12.
go back to reference Konishi K, Nakamura M, Yamakawa H et al (1991) Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci 301:322–328CrossRefPubMed Konishi K, Nakamura M, Yamakawa H et al (1991) Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci 301:322–328CrossRefPubMed
13.
go back to reference Abdel-Wanis M, Kawahara N (2002) Hypophosphatemic osteomalacia in neurofibromatosis 1: hypotheses for pathogenesis and higher incidence of spinal deformity. Med Hypotheses 59:183–185CrossRefPubMed Abdel-Wanis M, Kawahara N (2002) Hypophosphatemic osteomalacia in neurofibromatosis 1: hypotheses for pathogenesis and higher incidence of spinal deformity. Med Hypotheses 59:183–185CrossRefPubMed
14.
go back to reference Weinstein RS, Harris RL (1990) Hypercalcemic hyperparathyroidism and hypophosphatemic osteomalacia complicating neurofibromatosis. Calcif Tissue Int 46:361–366CrossRefPubMed Weinstein RS, Harris RL (1990) Hypercalcemic hyperparathyroidism and hypophosphatemic osteomalacia complicating neurofibromatosis. Calcif Tissue Int 46:361–366CrossRefPubMed
15.
go back to reference Lammert M, Friedman JM, Roth HJ et al (2006) Vitamin D deficiency associated with number of neurofibromas in neurofibromatosis 1. J Med Genet 43:810–813CrossRefPubMed Lammert M, Friedman JM, Roth HJ et al (2006) Vitamin D deficiency associated with number of neurofibromas in neurofibromatosis 1. J Med Genet 43:810–813CrossRefPubMed
16.
go back to reference Brunetti-Pierri N, Doty SB, Hicks J et al (2008) Generalized metabolic bone disease in neurofibromatosis type I. Mol Genet Metab 94(1):105–111CrossRefPubMed Brunetti-Pierri N, Doty SB, Hicks J et al (2008) Generalized metabolic bone disease in neurofibromatosis type I. Mol Genet Metab 94(1):105–111CrossRefPubMed
17.
go back to reference Parfitt AM, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef Parfitt AM, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef
18.
go back to reference Boyde A, Maconnachie E, Reid SA et al (1986) Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc 4:1537–1554 Boyde A, Maconnachie E, Reid SA et al (1986) Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc 4:1537–1554
19.
go back to reference Boyde A, Travers R, Glorieux FH et al (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190CrossRefPubMed Boyde A, Travers R, Glorieux FH et al (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190CrossRefPubMed
20.
go back to reference Jones SJ, Glorieux FH, Travers R et al (1999) The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int 64:8–17CrossRefPubMed Jones SJ, Glorieux FH, Travers R et al (1999) The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int 64:8–17CrossRefPubMed
21.
go back to reference Roschger P, Paschalis EP, Fratzl P et al (2008) Bone mineralization density distribution in health and disease. Bone 42(3):456–466CrossRefPubMed Roschger P, Paschalis EP, Fratzl P et al (2008) Bone mineralization density distribution in health and disease. Bone 42(3):456–466CrossRefPubMed
22.
go back to reference Roschger P, Plenk H, Klaushofer K et al (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scan Electron Microsc 9:75–86 Roschger P, Plenk H, Klaushofer K et al (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scan Electron Microsc 9:75–86
23.
go back to reference Skedros JG, Bloebaum RD, Bachus KN et al (1993) Influence of mineral content and composition on gray levels in backscattered electron images of bone. J Biomed Mater Res 27:57–64CrossRefPubMed Skedros JG, Bloebaum RD, Bachus KN et al (1993) Influence of mineral content and composition on gray levels in backscattered electron images of bone. J Biomed Mater Res 27:57–64CrossRefPubMed
24.
go back to reference Roschger P, Fratzl P, Eschberger J et al (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326CrossRefPubMed Roschger P, Fratzl P, Eschberger J et al (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326CrossRefPubMed
25.
go back to reference Delling G (1974) Endokrine Knochenerkrankungen. Verh Dtsch Ges Pathol 58:176–192PubMed Delling G (1974) Endokrine Knochenerkrankungen. Verh Dtsch Ges Pathol 58:176–192PubMed
26.
go back to reference Priemel M, Klatte TO, Kessler S et al (2007) Bone mineralization defects and vitamin D inadequacy. Histomorphometric analysis of iliac crest bone biopsies and circulating 25-[OH] vitamin D in 648 patients. J Bone Miner Res 22(Suppl 1):S83 Priemel M, Klatte TO, Kessler S et al (2007) Bone mineralization defects and vitamin D inadequacy. Histomorphometric analysis of iliac crest bone biopsies and circulating 25-[OH] vitamin D in 648 patients. J Bone Miner Res 22(Suppl 1):S83
27.
go back to reference Holick MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers and cardivascular disease. AM J Clin Nutr 80(6 Suppl):1678S–1688SPubMed Holick MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers and cardivascular disease. AM J Clin Nutr 80(6 Suppl):1678S–1688SPubMed
28.
go back to reference Holick MF, Chen TU, Lu Z et al (2007) Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res 22(Suppl 2):V28–V33CrossRefPubMed Holick MF, Chen TU, Lu Z et al (2007) Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res 22(Suppl 2):V28–V33CrossRefPubMed
29.
go back to reference Yang FC, Chen S, Robling AG et al (2006) Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest 116:2880–2891CrossRefPubMed Yang FC, Chen S, Robling AG et al (2006) Hyperactivation of p21ras and PI3K cooperate to alter murine and human neurofibromatosis type 1-haploinsufficient osteoclast functions. J Clin Invest 116:2880–2891CrossRefPubMed
30.
go back to reference Kolanczyk M, Kossler N, Kühnisch J et al (2007) Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet 16(8):874–886CrossRefPubMed Kolanczyk M, Kossler N, Kühnisch J et al (2007) Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet 16(8):874–886CrossRefPubMed
31.
go back to reference Stevenson DA, Schwarz EL, Viskochil DH et al (2008) Evidence of increased bone resorption in neurofibromatosis type 1 using urinary pyridinium crosslink analysis. Pediatr Res 63(6):697–701CrossRefPubMed Stevenson DA, Schwarz EL, Viskochil DH et al (2008) Evidence of increased bone resorption in neurofibromatosis type 1 using urinary pyridinium crosslink analysis. Pediatr Res 63(6):697–701CrossRefPubMed
32.
go back to reference Gerdhem P, Ringsberg KA, Obrant KJ et al (2005) Association between 25-hydroxyvitamin D3 levels, physical activity, muscle strength and fractures in the prospective population-based OPRA study of elderly women. Osteoporos Int 16(11):1425–1431CrossRefPubMed Gerdhem P, Ringsberg KA, Obrant KJ et al (2005) Association between 25-hydroxyvitamin D3 levels, physical activity, muscle strength and fractures in the prospective population-based OPRA study of elderly women. Osteoporos Int 16(11):1425–1431CrossRefPubMed
33.
go back to reference Houston DK, Cesari M, Ferrucci L et al (2007) Association between vitamin D3 status and physical performance: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 62(4):440–446PubMed Houston DK, Cesari M, Ferrucci L et al (2007) Association between vitamin D3 status and physical performance: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 62(4):440–446PubMed
34.
go back to reference Bischoff-Ferrari HA, Dietrich T, Orav EJ et al (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive person aged > or = 60 years. Am J Clin Nutr 80(3):752–758PubMed Bischoff-Ferrari HA, Dietrich T, Orav EJ et al (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive person aged > or = 60 years. Am J Clin Nutr 80(3):752–758PubMed
Metadata
Title
High bone turnover and accumulation of osteoid in patients with neurofibromatosis 1
Authors
S. Seitz
C. Schnabel
B. Busse
H. U. Schmidt
F. T. Beil
R. E. Friedrich
T. Schinke
V. F. Mautner
M. Amling
Publication date
01-01-2010
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 1/2010
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-009-0933-y

Other articles of this Issue 1/2010

Osteoporosis International 1/2010 Go to the issue