Skip to main content
Top
Published in: Osteoporosis International 7/2006

01-07-2006 | Original Article

Transdermal application of lovastatin to rats causes profound increases in bone formation and plasma concentrations

Authors: G. E. Gutierrez, D. Lalka, I. R. Garrett, G. Rossini, G. R. Mundy

Published in: Osteoporosis International | Issue 7/2006

Login to get access

Abstract

Introduction

Statins are drugs that inhibit HMG Co-A reductase and have been shown to enhance bone formation in vitro and in vivo in rodents. However, the statins currently used for cholesterol-lowering have been selected for their capacity to target the liver where their effects on cholesterol synthesis are mediated and they undergo first pass metabolism. When given in lipid-lowering doses, these agents do not likely reach sufficient blood concentrations to reliably cause substantial increases in bone formation in humans. Moreover, statins are inactivated by cytochrome P450 enzymes, resulting in even less peripheral distribution of the biologically active moieties beyond the liver.

Method

To investigate whether an alternate method of administration might produce beneficial effects on bone formation, we administered lovastatin by dermal application to rats to circumvent the first-pass effects of the gut wall and liver.

Results

We found that the statin blood levels measured by HMG Co-A reductase activity were higher, maintained longer and less variable following transdermal application than those following oral administration. Also the increased circulating statin levels were associated with significantly enhanced biological effects on bone. After only 5 days of administration of transdermal lovastatin to rats, there was a 30–60% increase in trabecular bone volume, and 4 weeks later, we observed more than a 150% increase in bone formation rates. There was also a significant increase in serum osteocalcin, a marker of bone formation. We also found that lovastatin administered transdermally produces these profound effects at doses in the range of 1% of the oral dose, without any evidence of the hepatotoxicity or myotoxicity that can occur following oral statin administration. Several doses (0.01–5 mg kg−1 day−1) and dosage schedules were examined, and collectively the data strongly suggest a powerful anabolic effect but with an unusually flat dose-response curve.

Conclusion

These results show transdermal application of statins produces greater beneficial effects on bone formation than oral administration does.
Literature
1.
go back to reference Mundy GR, Garrett IR, Harris SE, Chan J, Chen D, Rossini G, Boyce BF, Zhao M, Gutierrez G (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286:1946–1949PubMedCrossRef Mundy GR, Garrett IR, Harris SE, Chan J, Chen D, Rossini G, Boyce BF, Zhao M, Gutierrez G (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286:1946–1949PubMedCrossRef
2.
go back to reference Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H (2000) HMG-CoA reductase inhibitors and the risk of fractures. JAMA 283:3205–3210PubMedCrossRef Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H (2000) HMG-CoA reductase inhibitors and the risk of fractures. JAMA 283:3205–3210PubMedCrossRef
3.
go back to reference Wang PS, Solomon DH, Mogun H, Avorn J (2000) HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA 283:3211–3216PubMedCrossRef Wang PS, Solomon DH, Mogun H, Avorn J (2000) HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA 283:3211–3216PubMedCrossRef
4.
go back to reference Edwards CJ, Hart DJ, Spector TD (2000) Oral statins and increased bone-mineral density in postmenopausal women. Lancet 355:2218–2219PubMedCrossRef Edwards CJ, Hart DJ, Spector TD (2000) Oral statins and increased bone-mineral density in postmenopausal women. Lancet 355:2218–2219PubMedCrossRef
5.
go back to reference Chan AK, Andrade SE, Boles M et al (2000) Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet 355:2185–2188PubMedCrossRef Chan AK, Andrade SE, Boles M et al (2000) Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet 355:2185–2188PubMedCrossRef
6.
go back to reference Chung YS, Lee MD, Lee SK, Kim HM, Fitzpatrick LA (2000) HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab 85:1137–1142PubMedCrossRef Chung YS, Lee MD, Lee SK, Kim HM, Fitzpatrick LA (2000) HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab 85:1137–1142PubMedCrossRef
7.
go back to reference Wada Y, Nakamura Y, Koshiyama H (2000) Lack of positive correlation between statin use and bone mineral density in Japanese subjects with type 2 diabetes. Arch Intern Med 160:2865PubMedCrossRef Wada Y, Nakamura Y, Koshiyama H (2000) Lack of positive correlation between statin use and bone mineral density in Japanese subjects with type 2 diabetes. Arch Intern Med 160:2865PubMedCrossRef
8.
go back to reference van Staa TP, Wegman S, de Vries F, Leufkens B, Cooper C (2001) Use of statins and risk of fractures. JAMA 285:1850–1855PubMedCrossRef van Staa TP, Wegman S, de Vries F, Leufkens B, Cooper C (2001) Use of statins and risk of fractures. JAMA 285:1850–1855PubMedCrossRef
9.
go back to reference Bauer DC, Mundy GR, Jamal SA, Black DM, Cauley JA, Ensrud KE, van der Klift M, Pols HA (2004) Use of statins and fracture: results of 4 prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch Intern Med 26 164(2):146–152CrossRef Bauer DC, Mundy GR, Jamal SA, Black DM, Cauley JA, Ensrud KE, van der Klift M, Pols HA (2004) Use of statins and fracture: results of 4 prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch Intern Med 26 164(2):146–152CrossRef
10.
go back to reference Hamelin BA, Turgeon J (1998) Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 19:26–37PubMedCrossRef Hamelin BA, Turgeon J (1998) Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 19:26–37PubMedCrossRef
11.
go back to reference Henwood JM, Heel RC (1988) Lovastatin: a preliminary review of its pharmacodynamic properties and therapeutic use in hyperlipidaemia. Drugs 36:429–454PubMed Henwood JM, Heel RC (1988) Lovastatin: a preliminary review of its pharmacodynamic properties and therapeutic use in hyperlipidaemia. Drugs 36:429–454PubMed
12.
go back to reference Germershausen JI, Hunt VM, Bostedor RG, Bailey PJ, Karkas JD, Alberts AW (1989) Tissue selectivity of the cholesterol-lowering agents lovastatin, simvastatin and pravastatin in rats in vivo. Biochem Biophys Res Commun 158:667–675PubMedCrossRef Germershausen JI, Hunt VM, Bostedor RG, Bailey PJ, Karkas JD, Alberts AW (1989) Tissue selectivity of the cholesterol-lowering agents lovastatin, simvastatin and pravastatin in rats in vivo. Biochem Biophys Res Commun 158:667–675PubMedCrossRef
13.
go back to reference Heller RA, Gould RG (1973) Solubilization and practical purification of hepatic 3-hydroxy-3-methylglutaryl coenzyme a reductase. Biochem Biophys Res Commun 50:859–865PubMedCrossRef Heller RA, Gould RG (1973) Solubilization and practical purification of hepatic 3-hydroxy-3-methylglutaryl coenzyme a reductase. Biochem Biophys Res Commun 50:859–865PubMedCrossRef
14.
go back to reference Davidson MH (2000) Does differing metabolism by cytochrome P450 add clinical importance? Curr Atheroscler Rep 1:14–19CrossRef Davidson MH (2000) Does differing metabolism by cytochrome P450 add clinical importance? Curr Atheroscler Rep 1:14–19CrossRef
15.
go back to reference Duggan DE, Vickers S (1990) Physiological disposition of HMG-CoA-reductase inhibitors. Drug Metab Rev 22:333–362PubMed Duggan DE, Vickers S (1990) Physiological disposition of HMG-CoA-reductase inhibitors. Drug Metab Rev 22:333–362PubMed
16.
go back to reference Zhou LX, Finley DK, Hassell AE, Holtzman JL (1995) Pharmacokinetic interaction between isradipine and lovastatin in normal, female and male volunteers. J Pharmacol Exp Ther 273:121–127PubMed Zhou LX, Finley DK, Hassell AE, Holtzman JL (1995) Pharmacokinetic interaction between isradipine and lovastatin in normal, female and male volunteers. J Pharmacol Exp Ther 273:121–127PubMed
17.
go back to reference Parfitt AM (1988) Bone histomorphometry: standardization of nomenclature, symbols and units. Summary of proposed system. J Bone Miner Res 4:1–5 Parfitt AM (1988) Bone histomorphometry: standardization of nomenclature, symbols and units. Summary of proposed system. J Bone Miner Res 4:1–5
18.
go back to reference Maeda T, Matsunuma A, Kawane T, Horiuchi N (2001) Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun 280:874–877PubMedCrossRef Maeda T, Matsunuma A, Kawane T, Horiuchi N (2001) Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun 280:874–877PubMedCrossRef
19.
go back to reference Reves JG, Fragen RJ, Vinik HR, Greenblatt DJ (1985) Midazolam: pharmacology and uses. Anesthesiology 62:310–324PubMedCrossRef Reves JG, Fragen RJ, Vinik HR, Greenblatt DJ (1985) Midazolam: pharmacology and uses. Anesthesiology 62:310–324PubMedCrossRef
20.
21.
go back to reference Maritz FJ, Conradie MM, Hulley PA, Gopal R, Hough S (2001) Effect of statins on bone mineral density and bone histomorphometry in rodents. Arterioscler Thromb Vasc Biol 21:1636PubMedCrossRef Maritz FJ, Conradie MM, Hulley PA, Gopal R, Hough S (2001) Effect of statins on bone mineral density and bone histomorphometry in rodents. Arterioscler Thromb Vasc Biol 21:1636PubMedCrossRef
22.
go back to reference Oxlund H, Dalstra M, Andreassen TT (2001) Statin given perorally to adult rats increases cancellous bone mass and compressive strength. Calcif Tissue Int 69:299–304PubMedCrossRef Oxlund H, Dalstra M, Andreassen TT (2001) Statin given perorally to adult rats increases cancellous bone mass and compressive strength. Calcif Tissue Int 69:299–304PubMedCrossRef
23.
go back to reference Oxlund H, Andreassen TT (2004) Simvastatin treatment partially prevents ovariectomy-induced bone loss while increasing cortical bone formation. Bone 34:609–618PubMedCrossRef Oxlund H, Andreassen TT (2004) Simvastatin treatment partially prevents ovariectomy-induced bone loss while increasing cortical bone formation. Bone 34:609–618PubMedCrossRef
24.
go back to reference Wang RW, Kari PH, Lu AYH, Thomas PE, Guengerich FP, Vyas KP (1991) Biotransformation of lovastatin: IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 290:355–361PubMedCrossRef Wang RW, Kari PH, Lu AYH, Thomas PE, Guengerich FP, Vyas KP (1991) Biotransformation of lovastatin: IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 290:355–361PubMedCrossRef
25.
go back to reference Halpin RA, Ulm EH, Till AE, Kari PH, Vyas KP, Hunninghake DB, Duggan DE (1993) Biotransformation of lovastatin: V. Species differences in in vivo metabolite profiles of mouse, rat, dog, and human. Drug Metab Dispos 21:1003–1011PubMed Halpin RA, Ulm EH, Till AE, Kari PH, Vyas KP, Hunninghake DB, Duggan DE (1993) Biotransformation of lovastatin: V. Species differences in in vivo metabolite profiles of mouse, rat, dog, and human. Drug Metab Dispos 21:1003–1011PubMed
26.
go back to reference Jacobsen W, Kirchner G, Hallensleben K, Mancinelli L, Deters M, Hackbarth I, Benet LZ, Sewing KF, Christians U (1999) Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Dispos 27:173–179PubMed Jacobsen W, Kirchner G, Hallensleben K, Mancinelli L, Deters M, Hackbarth I, Benet LZ, Sewing KF, Christians U (1999) Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Dispos 27:173–179PubMed
27.
go back to reference Chen HS, Gross JF (1980) Intra-arterial infusion of anticancer drugs: theoretic aspects of drug delivery and review of responses. Cancer Treat Rep 64:31–40PubMed Chen HS, Gross JF (1980) Intra-arterial infusion of anticancer drugs: theoretic aspects of drug delivery and review of responses. Cancer Treat Rep 64:31–40PubMed
28.
go back to reference Bland LB, Garzotto M, DeLoughery TG, Ryan CW, Schuff KG, Wersinger EM, Lemmon D, Beer TM (2005) Phase II study of transdermal estradiol in androgen-independent prostate carcinoma. Cancer 103:717–723PubMedCrossRef Bland LB, Garzotto M, DeLoughery TG, Ryan CW, Schuff KG, Wersinger EM, Lemmon D, Beer TM (2005) Phase II study of transdermal estradiol in androgen-independent prostate carcinoma. Cancer 103:717–723PubMedCrossRef
29.
go back to reference Utian WH (1987) Transdermal estradiol overall safety profile. Am J Obstet Gynecol 156:1335–1338PubMed Utian WH (1987) Transdermal estradiol overall safety profile. Am J Obstet Gynecol 156:1335–1338PubMed
30.
go back to reference Wemme H, Pohlenz J, Schonberger W (1995) Effect of oestrogen/gestagen replacement therapy on liver enzymes in patients with Ullrich-Turner syndrome. Eur J Pediatr 154:807–810PubMedCrossRef Wemme H, Pohlenz J, Schonberger W (1995) Effect of oestrogen/gestagen replacement therapy on liver enzymes in patients with Ullrich-Turner syndrome. Eur J Pediatr 154:807–810PubMedCrossRef
31.
go back to reference Arnaud CD (2001) Two years of parathyroid hormone 1–34 and estrogen produce dramatic bone density increases in postmenopausal osteoporotic women that dissipate only slightly during a third year of treatment with estrogen alone: results from a placebo- controlled randomized trial. Bone 28:S77 Arnaud CD (2001) Two years of parathyroid hormone 1–34 and estrogen produce dramatic bone density increases in postmenopausal osteoporotic women that dissipate only slightly during a third year of treatment with estrogen alone: results from a placebo- controlled randomized trial. Bone 28:S77
32.
go back to reference Inkovaara J et al (1975) Prophylactic fluoride treatment and aged bones. Br Med J 3:73–74PubMed Inkovaara J et al (1975) Prophylactic fluoride treatment and aged bones. Br Med J 3:73–74PubMed
33.
go back to reference Gerster JC et al (1983) Bilateral fractures of femoral neck in patients with moderate renal failure receiving fluoride for spinal osteoporosis. Br Med J 287(6394):723–725CrossRef Gerster JC et al (1983) Bilateral fractures of femoral neck in patients with moderate renal failure receiving fluoride for spinal osteoporosis. Br Med J 287(6394):723–725CrossRef
34.
go back to reference Dambacher MA et al (1986) Long-term fluoride therapy of postmenopausal osteoporosis. Bone 7:199–205PubMedCrossRef Dambacher MA et al (1986) Long-term fluoride therapy of postmenopausal osteoporosis. Bone 7:199–205PubMedCrossRef
35.
go back to reference Wozney JM, Rosen V(1998) Bone morphogenetic proteins. In: Mundy JR, Martin TJ (eds) Physiology and pharmacology of bone. Springer-Verlag, Berlin Heidelberg New York, p 725–748 Wozney JM, Rosen V(1998) Bone morphogenetic proteins. In: Mundy JR, Martin TJ (eds) Physiology and pharmacology of bone. Springer-Verlag, Berlin Heidelberg New York, p 725–748
36.
go back to reference Tam CS, Heersche JN, Murray TM, Parsons JA (1982) Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology 10:506–512CrossRef Tam CS, Heersche JN, Murray TM, Parsons JA (1982) Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology 10:506–512CrossRef
37.
go back to reference Vyas KP, Kari PH, Prakash SR, Duggan DE (1990) Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin. Drug Metab Dispos 18:218–222PubMed Vyas KP, Kari PH, Prakash SR, Duggan DE (1990) Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin. Drug Metab Dispos 18:218–222PubMed
38.
go back to reference Ping Fang, Lei Dong, Jin-Yan Luo, Xiao-Long Wan, Ke-Xin Du, Ning-Li Chai (2004) Effects of motilin and ursodeoxycholic acid on gastrointestinal myoelectric activity of different origins in fasted rats. World J Gastroenterol 10:2509–2513 Ping Fang, Lei Dong, Jin-Yan Luo, Xiao-Long Wan, Ke-Xin Du, Ning-Li Chai (2004) Effects of motilin and ursodeoxycholic acid on gastrointestinal myoelectric activity of different origins in fasted rats. World J Gastroenterol 10:2509–2513
39.
go back to reference Chiang JY, Kimmel R, Stroup D (2001) Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha). Gene 10(262):257–265CrossRef Chiang JY, Kimmel R, Stroup D (2001) Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha). Gene 10(262):257–265CrossRef
Metadata
Title
Transdermal application of lovastatin to rats causes profound increases in bone formation and plasma concentrations
Authors
G. E. Gutierrez
D. Lalka
I. R. Garrett
G. Rossini
G. R. Mundy
Publication date
01-07-2006
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 7/2006
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-006-0079-0

Other articles of this Issue 7/2006

Osteoporosis International 7/2006 Go to the issue