Skip to main content
Top
Published in: Osteoporosis International 7/2005

01-07-2005 | Original Article

Musculoskeletal and functional muscle-bone analysis in children with rheumatic disease using peripheral quantitative computed tomography

Authors: S. Bechtold, P. Ripperger, R. Dalla Pozza, H. Schmidt, R. Häfner, H. P. Schwarz

Published in: Osteoporosis International | Issue 7/2005

Login to get access

Abstract

Bone demineralization is a severe complication of juvenile idiopathic arthritis (JIA) and other rheumatic diseases. To identify patients, who are at risk of bone disease, musculoskeletal analysis is performed. Furthermore, a more functional approach is needed to assess, whether bone strength is adequate for muscle force and whether muscle force is adequate for body size. In patients with a chronic disease it is most important to differentiate between primary bone problems and those that are secondary to low muscle force. To implement this approach, we measured musculoskeletal parameters of the radius in 94 patients with juvenile idiopathic arthritis of different subtypes and connective tissue disease using peripheral quantitative computed tomography. The four groups consisted of patients with oligoarticular (n=31), polyarticular (n=27), systemic JIA (n=20) and connective tissue disease (CTD) (n=16). All patients with systemic JIA and CTD and 56% of the patients with polyarticular JIA were under treatment with glucocorticoids. In general, the longer the duration of the disease and the more severe the subtype of the rheumatic disease, the shorter the height and the lower the bone density and bone strength parameters. Mean height, bone mineral content (BMC) and muscle cross-sectional area (CSA) were low for age, but muscle CSA was normal for height with the exception of patients with polyarticular disease. In the systemic JIA group the ratio of BMC per muscle CSA was decreased by –1.7±2.7 SD (P<0.05), suggesting that bone strength was not adequately adapted to muscle force. This was even more expressed in females than in males (14 versus 3). These patients need closer follow up and potential specific therapeutic intervention.
Literature
1.
go back to reference Pepmueller PH, Cassidy JT, Allen SH, Hillman LS (1996) Bone mineralization and bone metabolism in children with juvenile rheumatoid arthritis. Arthr Rheum 39:746–757 Pepmueller PH, Cassidy JT, Allen SH, Hillman LS (1996) Bone mineralization and bone metabolism in children with juvenile rheumatoid arthritis. Arthr Rheum 39:746–757
2.
go back to reference Rauch F, Schönau E (2002) Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch Dis Child Fetal Neonatal Ed 86:F82–F85CrossRefPubMed Rauch F, Schönau E (2002) Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch Dis Child Fetal Neonatal Ed 86:F82–F85CrossRefPubMed
3.
go back to reference Cimaz R (2002) Osteoporosis in childhood rheumatic disease: prevention and therapy. Best Pract Res Clin Rheumatol 16:397–409CrossRefPubMed Cimaz R (2002) Osteoporosis in childhood rheumatic disease: prevention and therapy. Best Pract Res Clin Rheumatol 16:397–409CrossRefPubMed
4.
5.
go back to reference Van Staa TP, Cooper C, Leufkens HGM, Bishop N (2003) Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res 18:913–918PubMed Van Staa TP, Cooper C, Leufkens HGM, Bishop N (2003) Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res 18:913–918PubMed
6.
go back to reference Schönau E, Neu CM, Beck B, Manz F, Rauch F (2002) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101PubMed Schönau E, Neu CM, Beck B, Manz F, Rauch F (2002) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101PubMed
7.
go back to reference Prader A, Largo RH, Molinari L, Issler C (1989) Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Pediatr Acta 52 (Suppl):1–125 Prader A, Largo RH, Molinari L, Issler C (1989) Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Pediatr Acta 52 (Suppl):1–125
8.
go back to reference Neu C, Manz F, Rauch F, Schönau E (2001) Bone density and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28:227–232CrossRefPubMed Neu C, Manz F, Rauch F, Schönau E (2001) Bone density and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28:227–232CrossRefPubMed
9.
go back to reference Neu C, Manz F, Rauch F, Schönau E (2001) Modeling of cross-sectional bone size and geometry at the proximal radius—a study of normal bone development using peripheral quantitative computed tomography. Osteoporos Int 12:538–547CrossRefPubMed Neu C, Manz F, Rauch F, Schönau E (2001) Modeling of cross-sectional bone size and geometry at the proximal radius—a study of normal bone development using peripheral quantitative computed tomography. Osteoporos Int 12:538–547CrossRefPubMed
10.
go back to reference Tanner JM (1962) Growth at adolescence. In: The development of the reproductive system, 2nd edn. Blackwell, Oxford, pp 28–39 Tanner JM (1962) Growth at adolescence. In: The development of the reproductive system, 2nd edn. Blackwell, Oxford, pp 28–39
11.
go back to reference Steinbrocker O, Traeger CH, Batermann RC (1949) Therapeutic criteria in rheumatoid arthritis. JAMA 140:652–662 Steinbrocker O, Traeger CH, Batermann RC (1949) Therapeutic criteria in rheumatoid arthritis. JAMA 140:652–662
12.
go back to reference Bechtold S, Rauch F, Noelle V, Donhauser S, Neu CM, Schönau E, Schwarz HP (2001) Musculoskeletal analyses of the forearm in young women with Turner syndrome: a study using peripheral quantitative computed tomography. J Clin Endocrinol Metab 86:5819–5823CrossRefPubMed Bechtold S, Rauch F, Noelle V, Donhauser S, Neu CM, Schönau E, Schwarz HP (2001) Musculoskeletal analyses of the forearm in young women with Turner syndrome: a study using peripheral quantitative computed tomography. J Clin Endocrinol Metab 86:5819–5823CrossRefPubMed
13.
go back to reference Schönau E, Neu CM, Rauch F, Manz F (2001) The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 86:613–618CrossRefPubMed Schönau E, Neu CM, Rauch F, Manz F (2001) The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 86:613–618CrossRefPubMed
14.
go back to reference Varonos S, Ansell BM, Reeve J (1987) Vertebral collapse in juvenile chronic arthritis: the relationship with glucocorticoid therapy. Calcif Tissue Int 41:75–78PubMed Varonos S, Ansell BM, Reeve J (1987) Vertebral collapse in juvenile chronic arthritis: the relationship with glucocorticoid therapy. Calcif Tissue Int 41:75–78PubMed
15.
go back to reference Woo PM (1994) Growth retardation and osteoporosis in juvenile chronic arthritis. Clin Exp Rheumatol 12 (Suppl 10):87–90 Woo PM (1994) Growth retardation and osteoporosis in juvenile chronic arthritis. Clin Exp Rheumatol 12 (Suppl 10):87–90
16.
go back to reference Henderson CJ, Cawkwell GD, Specker BL, Sierra RI, Wilmott RW, Campaigne BN et al. (1997) Predictors of total body bone mineral density in non-corticosteroid-treated prepubertal children with juvenile rheumatoid arthritis. Arthr Rheum 40:1967–1975 Henderson CJ, Cawkwell GD, Specker BL, Sierra RI, Wilmott RW, Campaigne BN et al. (1997) Predictors of total body bone mineral density in non-corticosteroid-treated prepubertal children with juvenile rheumatoid arthritis. Arthr Rheum 40:1967–1975
17.
go back to reference Henderson CJ, Specker BL, Sierra RI, Campaigne BN, Lovell DJ (2000) Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis. Arthr Rheum 43:531–540CrossRef Henderson CJ, Specker BL, Sierra RI, Campaigne BN, Lovell DJ (2000) Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis. Arthr Rheum 43:531–540CrossRef
18.
go back to reference Kontaniemi A (1997) Growth retardation and bone loss as determinants of axial osteopenia in juvenile chronic arthritis. Scand J Rheumatol 26:14–18PubMed Kontaniemi A (1997) Growth retardation and bone loss as determinants of axial osteopenia in juvenile chronic arthritis. Scand J Rheumatol 26:14–18PubMed
19.
go back to reference Cetin A, Celiker R, Dincer FU, Ariyürek M (1998) Bone mineral density in children with juvenile chronic arthritis. Clin Rheumatol 17:551–553PubMed Cetin A, Celiker R, Dincer FU, Ariyürek M (1998) Bone mineral density in children with juvenile chronic arthritis. Clin Rheumatol 17:551–553PubMed
20.
go back to reference Brik R, Keidar Z, Schapira D, Israel O (1998) Bone mineral density and turnover in children with systemic juvenile chronic arthritis. J Rheumatol 25:798–804PubMed Brik R, Keidar Z, Schapira D, Israel O (1998) Bone mineral density and turnover in children with systemic juvenile chronic arthritis. J Rheumatol 25:798–804PubMed
21.
go back to reference Zak M, Hassager C, Lovell DJ, Nielsen S, Henderson CJ, Pedersen FK (1999) Assessment of bone mineral density in adults with a history of juvenile chronic arthritis. Arthr Rheum 42:790–798CrossRef Zak M, Hassager C, Lovell DJ, Nielsen S, Henderson CJ, Pedersen FK (1999) Assessment of bone mineral density in adults with a history of juvenile chronic arthritis. Arthr Rheum 42:790–798CrossRef
22.
go back to reference Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9PubMed Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9PubMed
23.
go back to reference Rauch F, Schönau E (2001) The developing bone: Slave or master of its cells and molecules ? Pediatr Res 50:309–314PubMed Rauch F, Schönau E (2001) The developing bone: Slave or master of its cells and molecules ? Pediatr Res 50:309–314PubMed
24.
go back to reference Schönau E (1998) The development of the skeletal system in children and the influence of muscular strength. Horm Res 49:27–31CrossRefPubMed Schönau E (1998) The development of the skeletal system in children and the influence of muscular strength. Horm Res 49:27–31CrossRefPubMed
25.
go back to reference Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implications for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 9:799–808 Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implications for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 9:799–808
Metadata
Title
Musculoskeletal and functional muscle-bone analysis in children with rheumatic disease using peripheral quantitative computed tomography
Authors
S. Bechtold
P. Ripperger
R. Dalla Pozza
H. Schmidt
R. Häfner
H. P. Schwarz
Publication date
01-07-2005
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 7/2005
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-004-1747-6

Other articles of this Issue 7/2005

Osteoporosis International 7/2005 Go to the issue