Skip to main content
Top
Published in: Osteoporosis International 11/2003

01-11-2003 | Original Article

Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD

Authors: S. Kaptoge, N. Dalzell, R. W. Jakes, N. Wareham, N. E. Day, K. T. Khaw, T. J. Beck, N. Loveridge, J. Reeve

Published in: Osteoporosis International | Issue 11/2003

Login to get access

Abstract

We hypothesized that measures of physical activity would have a closer relationship with section modulus (SM), an indicator of bending resistance, than with bone mineral density (BMD) because physical activity might expand the bony envelope, which tends to reduce BMD for a constant bone mineral content. Four hundred twenty-three men and 436 women (mean age 72 years, SD =3) were recruited from a prospective population-based cohort study to a study of hip bone loss. Hip BMD was measured on two occasions 2–5 years apart (mean 2.7, DXA-Hologic 1,000 W). Hip structural analysis (HSA) software was used to calculate SM and BMD from the DXA scans on three narrow regions: the narrow neck (NN), intertrochanter (IT) and shaft (S). A physical activity and lifestyle questionnaire was administered at baseline. Multivariate repeated measures analysis of variance was used to model the associations between personal attributes (weight, height, age), physical activity and lifestyle variables with SM, cross-sectional area (CSA), sub-periosteal diameter (PD) and BMD. Men and women were analysed together after tests for interactions with gender, which were found not to be significant. In all regions female gender was associated with having lower values of all outcomes, and body weight was positively associated with all outcomes, i.e., SM, CSA, PD and BMD (P<0.0001). Sub-periosteal diameter was positively associated with reported lifetime physical activity (IT and S, P<0.0001). There was a significant decline of BMD with age at the NN and S regions (P<0.026), and the PD increased with age (NN and S, P<0.019). Previous fracture history was associated with having lower values of BMD, SM and CSA (except for S; P<0.022). Both section modulus and CSA were positively associated with heavy physical activity after age 50 years in all regions (P<0.019), whereas NN BMD was the only BMD associate of heavy physical activity after 50 (P=0.036). Time spent per week on recreational activities classified as no impact activity was positively associated with BMD, CSA and SM (multivariate P<0.016). In conclusion, proximal femur diameter is associated positively with reported life-long physical activity. If this is mediated through a loading related effect on sub-periosteal expansion, BMD would be an unsatisfactory outcome measure in physical activity studies since it is inversely related to projected bone area. SM in contrast was associated with several measures of recent physical activity and relates more directly to the bending experienced by the proximal femur in response to a given load. These data are consistent with an effect of mechanical loading to regulate bone strength through an anabolic effect maximal in the subperiosteal cortex, where the highest loading-related strains are experienced.
Literature
1.
go back to reference Bolotin HH, Sievänen H (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J Bone Miner Res 16:799–805PubMed Bolotin HH, Sievänen H (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J Bone Miner Res 16:799–805PubMed
2.
go back to reference Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145PubMed Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145PubMed
3.
go back to reference Seeman E (1997) From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 12:509–521PubMed Seeman E (1997) From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 12:509–521PubMed
4.
go back to reference McCreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15:2305–2308PubMed McCreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15:2305–2308PubMed
5.
go back to reference Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the ageing femoral neck and proximal shaft: analysis of the third national health and nutrition examination survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304PubMed Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the ageing femoral neck and proximal shaft: analysis of the third national health and nutrition examination survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304PubMed
6.
go back to reference Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, et al (2001) Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 16:1108–1119PubMed Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, et al (2001) Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 16:1108–1119PubMed
7.
go back to reference Heaney RP, Barger-Lux MJ, Davies KM, A. RR, Johnson ML, Gong G (1997) Bone dimensional change with age: interactions of genetic, hormonal, and body size variables. Osteoporos Int 7:426–431PubMed Heaney RP, Barger-Lux MJ, Davies KM, A. RR, Johnson ML, Gong G (1997) Bone dimensional change with age: interactions of genetic, hormonal, and body size variables. Osteoporos Int 7:426–431PubMed
8.
go back to reference Beck TJ, Stone KL, Oreskovic TL, Hochberg MC, Nevitt MC, Genant HK, et al (2001) Effects of current and discontinued estrogen replacement therapy on hip structural geometry: the study of osteoporotic fractures. J Bone Miner Res 16:2103–2110PubMed Beck TJ, Stone KL, Oreskovic TL, Hochberg MC, Nevitt MC, Genant HK, et al (2001) Effects of current and discontinued estrogen replacement therapy on hip structural geometry: the study of osteoporotic fractures. J Bone Miner Res 16:2103–2110PubMed
9.
go back to reference Kaptoge SK, Dalzell N, Loveridge N, Beck TJ, Khaw K-T, Reeve J (2003) Effects of gender, anthropometric variables and aging on the evolution of hip strength in men and women aged over 65. Bone 32:561–570 Kaptoge SK, Dalzell N, Loveridge N, Beck TJ, Khaw K-T, Reeve J (2003) Effects of gender, anthropometric variables and aging on the evolution of hip strength in men and women aged over 65. Bone 32:561–570
10.
go back to reference Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, et al (1994) Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 9:1053–1064PubMed Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, et al (1994) Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 9:1053–1064PubMed
11.
go back to reference Beck TJ, Ruff CB, Warren KE, Scott WW, Gopala U (1990) Predicting femoral neck strength from bone mineral data: A structural approach. Invest Radiol 25:6–18PubMed Beck TJ, Ruff CB, Warren KE, Scott WW, Gopala U (1990) Predicting femoral neck strength from bone mineral data: A structural approach. Invest Radiol 25:6–18PubMed
12.
go back to reference Mourtada F, Beck T, Hauser D, Ruff C, Bao G (1996) Curved beam model of the proximal femur for estimating stress using dual x-ray absorptiometry derived structural geometry. J Orthop Res 14:483–492PubMed Mourtada F, Beck T, Hauser D, Ruff C, Bao G (1996) Curved beam model of the proximal femur for estimating stress using dual x-ray absorptiometry derived structural geometry. J Orthop Res 14:483–492PubMed
13.
go back to reference Day N, Oakes S, Luben R, Khaw K-T, Bingham S, Welch A, et al (1999) EPIC in Norfolk: study design and characteristics of the cohort. Br J Cancer 80 [Suppl 1]:95–103 Day N, Oakes S, Luben R, Khaw K-T, Bingham S, Welch A, et al (1999) EPIC in Norfolk: study design and characteristics of the cohort. Br J Cancer 80 [Suppl 1]:95–103
14.
go back to reference Jakes R, Khaw K-T, Day N, Bingham S, Welch A, Oakes S, et al (2001) Patterns of physical activity and ultrasound attenuation by heel bone among Norfolk cohort of European Prospective Investigation of Cancer (EPIC Norfolk): population based study. BMJ 322:140–143CrossRefPubMed Jakes R, Khaw K-T, Day N, Bingham S, Welch A, Oakes S, et al (2001) Patterns of physical activity and ultrasound attenuation by heel bone among Norfolk cohort of European Prospective Investigation of Cancer (EPIC Norfolk): population based study. BMJ 322:140–143CrossRefPubMed
15.
go back to reference Wareham NJ, Jakes RW, Rennie KL, Mitchell J, Hennings S, Day NE (2002) Validity and repeatability of the EPIC-Norfolk physical activity questionnaire. Int J Epidemiol 31:168–174CrossRefPubMed Wareham NJ, Jakes RW, Rennie KL, Mitchell J, Hennings S, Day NE (2002) Validity and repeatability of the EPIC-Norfolk physical activity questionnaire. Int J Epidemiol 31:168–174CrossRefPubMed
16.
go back to reference Matthis C, Weber U, O'Neill TW, Raspe H (1998) The European Vertebral Osteoporosis Study Group. Health impact associated with vertebral deformities: results from the European Vertebral Osteoporosis Study. Osteoporos Int 8:364–372CrossRefPubMed Matthis C, Weber U, O'Neill TW, Raspe H (1998) The European Vertebral Osteoporosis Study Group. Health impact associated with vertebral deformities: results from the European Vertebral Osteoporosis Study. Osteoporos Int 8:364–372CrossRefPubMed
17.
go back to reference Lunt M, Masaryk P, Scheidt-Nave C, Nijs J, Poor G, Pols H, et al (2001) The effects of lifestyle, dietary dairy intake and diabetes on bone density and vertebral deformity prevalence: The EVOS study. Osteoporos Int 12:688–698CrossRefPubMed Lunt M, Masaryk P, Scheidt-Nave C, Nijs J, Poor G, Pols H, et al (2001) The effects of lifestyle, dietary dairy intake and diabetes on bone density and vertebral deformity prevalence: The EVOS study. Osteoporos Int 12:688–698CrossRefPubMed
18.
go back to reference O'Neill TW, Cooper C, Cannata JB, Diaz Lopez JB, Hoszowski K, Johnell O, et al (1994) Reproducibility of a questionnaire on risk factors for osteoporosis in a multicentre prevalence survey: the European Vertebral Osteoporosis Study. Int J Epidemiol 23:559–565 O'Neill TW, Cooper C, Cannata JB, Diaz Lopez JB, Hoszowski K, Johnell O, et al (1994) Reproducibility of a questionnaire on risk factors for osteoporosis in a multicentre prevalence survey: the European Vertebral Osteoporosis Study. Int J Epidemiol 23:559–565
19.
go back to reference Nelson HD, Morris CD, Kraemer DF, Mahon S, Carney C, Nygren PM, et al (2001) Osteoporosis in postmenopausal women: diagnosis and monitoring. Evidence Report/Technology Assessment No. 28 (Prepared by the Oregon Health and Science University Evidence-based Practice Center under Contract no. 290–97–0018). AHRQ Publication no. 01-E032. Rockville, MD: Agency for Healthcare Research and Quality. January 2001 Nelson HD, Morris CD, Kraemer DF, Mahon S, Carney C, Nygren PM, et al (2001) Osteoporosis in postmenopausal women: diagnosis and monitoring. Evidence Report/Technology Assessment No. 28 (Prepared by the Oregon Health and Science University Evidence-based Practice Center under Contract no. 290–97–0018). AHRQ Publication no. 01-E032. Rockville, MD: Agency for Healthcare Research and Quality. January 2001
20.
go back to reference Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, et al (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS study. Osteoporos Int 7:175–189PubMed Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, et al (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS study. Osteoporos Int 7:175–189PubMed
21.
go back to reference Looker AC, Beck TJ, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299PubMed Looker AC, Beck TJ, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299PubMed
22.
go back to reference Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone's adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947PubMed Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone's adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947PubMed
23.
go back to reference Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372PubMed Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372PubMed
24.
go back to reference Seeman E (2002) An exercise in geometry. J Bone Miner Res 17:373–380PubMed Seeman E (2002) An exercise in geometry. J Bone Miner Res 17:373–380PubMed
25.
go back to reference Wolff I, Croonenborg J, Kemper HC, Kostense PJ, Twisk JW (1999) The effects of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 9:1–12CrossRef Wolff I, Croonenborg J, Kemper HC, Kostense PJ, Twisk JW (1999) The effects of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 9:1–12CrossRef
26.
go back to reference Uusi-Rasi K, Sievanen H, Pasanen M, Oja P, Vuori I (2002) Associations of calcium intake and physical activity with bone density and size in premenopausal and postmenopausal women: A peripheral quantitative computed tomography study. J Bone Miner Res 17:544–552PubMed Uusi-Rasi K, Sievanen H, Pasanen M, Oja P, Vuori I (2002) Associations of calcium intake and physical activity with bone density and size in premenopausal and postmenopausal women: A peripheral quantitative computed tomography study. J Bone Miner Res 17:544–552PubMed
27.
go back to reference Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357 Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357
28.
go back to reference Lloyd T, Beck TJ, Lin HM, Tulchinsky M, Eggli DF, Oreskovic TL, et al (2002) Modifiable determinants of bone status in young women. Bone 30:416–421CrossRefPubMed Lloyd T, Beck TJ, Lin HM, Tulchinsky M, Eggli DF, Oreskovic TL, et al (2002) Modifiable determinants of bone status in young women. Bone 30:416–421CrossRefPubMed
29.
go back to reference Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, et al (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821PubMed Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, et al (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821PubMed
30.
go back to reference Bell K, Loveridge N, Power J, Garrahan N, Meggitt B, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64CrossRefPubMed Bell K, Loveridge N, Power J, Garrahan N, Meggitt B, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64CrossRefPubMed
31.
go back to reference Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, et al (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:1318–1328PubMed Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, et al (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:1318–1328PubMed
32.
go back to reference Schoenau E, Neu CM, Beck B, Manz F, Rauch F (2002) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101PubMed Schoenau E, Neu CM, Beck B, Manz F, Rauch F (2002) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101PubMed
33.
go back to reference Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, et al (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–C943PubMed Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, et al (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–C943PubMed
Metadata
Title
Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD
Authors
S. Kaptoge
N. Dalzell
R. W. Jakes
N. Wareham
N. E. Day
K. T. Khaw
T. J. Beck
N. Loveridge
J. Reeve
Publication date
01-11-2003
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 11/2003
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-003-1484-2

Other articles of this Issue 11/2003

Osteoporosis International 11/2003 Go to the issue