Skip to main content
Top
Published in: Osteoporosis International 5/2003

01-09-2003 | Original Article

Methodological considerations in measurement of bone mineral content

Authors: Georges Boivin, Pierre J. Meunier

Published in: Osteoporosis International | Special Issue 5/2003

Login to get access

Excerpt

The strength of bones depends on bone matrix volume, bone microarchitecture, and on the degree of mineralization of bone (DMB), and we have recently shown in patients with osteoporosis treated with alendronate that fracture risk and bone mineralization density (BMD) were changed without modifications of bone matrix volume or bone microarchitecture [1]. Thus, DMB must not be forgotten among the factors determining the mechanical competence of bone. …
Literature
1.
go back to reference Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694 Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694
2.
go back to reference Arnold JS, Bartley MH, Tont SA, Jenkins DP (1966) Skeletal changes in aging and disease. Clin Orthop 49:17–38PubMed Arnold JS, Bartley MH, Tont SA, Jenkins DP (1966) Skeletal changes in aging and disease. Clin Orthop 49:17–38PubMed
3.
go back to reference Boivin G, Baud C (1984) Microradiographic methods for calcified tissues. In: Dickson G (ed) Methods of calcified tissue preparation. Elsevier, Amsterdam, pp 391–411 Boivin G, Baud C (1984) Microradiographic methods for calcified tissues. In: Dickson G (ed) Methods of calcified tissue preparation. Elsevier, Amsterdam, pp 391–411
4.
go back to reference Meunier PJ, Boivin G (1997) Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21:373–377CrossRefPubMed Meunier PJ, Boivin G (1997) Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21:373–377CrossRefPubMed
5.
go back to reference Boivin G, Meunier P (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microadiography. Calcif Tissue Int 70:503–511CrossRefPubMed Boivin G, Meunier P (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microadiography. Calcif Tissue Int 70:503–511CrossRefPubMed
6.
go back to reference Reid SA, Boyde A (1987) Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM. J Bone Miner Res 2:13–22PubMed Reid SA, Boyde A (1987) Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM. J Bone Miner Res 2:13–22PubMed
7.
go back to reference Skedros JG, Bloebaum RD, Bachus KN, Boyce TM (1993) The meaning of gray levels in backscattered electron images of bone. J Biomed Mater Res 27:47–56PubMed Skedros JG, Bloebaum RD, Bachus KN, Boyce TM (1993) The meaning of gray levels in backscattered electron images of bone. J Biomed Mater Res 27:47–56PubMed
8.
go back to reference Skedros JG, Bloebaum RD, Bachus KN, Boyce TM, Constantz B (1993) Influence of mineral content and composition on gray levels in backscattered electron images of bone. J Biomed Mater Res 27:57–64PubMed Skedros JG, Bloebaum RD, Bachus KN, Boyce TM, Constantz B (1993) Influence of mineral content and composition on gray levels in backscattered electron images of bone. J Biomed Mater Res 27:57–64PubMed
9.
go back to reference Boyde A, Jones S, Aerssens J, Dequeker J (1995) Mineral density quantitation of the human cortical iliac crest by backscattered electron image analysis: variations with age, sex and degree of osteoarthritis. Bone 16:619–627CrossRefPubMed Boyde A, Jones S, Aerssens J, Dequeker J (1995) Mineral density quantitation of the human cortical iliac crest by backscattered electron image analysis: variations with age, sex and degree of osteoarthritis. Bone 16:619–627CrossRefPubMed
10.
go back to reference Roschger P, Plenk H, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K-alpha-line intensitites. Scanning Microsc 9:75–88PubMed Roschger P, Plenk H, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K-alpha-line intensitites. Scanning Microsc 9:75–88PubMed
11.
go back to reference Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326CrossRefPubMed Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326CrossRefPubMed
12.
go back to reference Bloebaum R, Skedros J, Vajda E, Bachus K, Constantz B (1997) Determining mineral content variations in bone using backscattered electron imaging. Bone 20:485–490CrossRefPubMed Bloebaum R, Skedros J, Vajda E, Bachus K, Constantz B (1997) Determining mineral content variations in bone using backscattered electron imaging. Bone 20:485–490CrossRefPubMed
13.
go back to reference Nuzzo S, Peyrin F, Cloetens P, Bachurel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimension using synchrotron radiation microtemography. Med Phys 29:2672–2681 Nuzzo S, Peyrin F, Cloetens P, Bachurel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimension using synchrotron radiation microtemography. Med Phys 29:2672–2681
14.
go back to reference Fratzl P, Groschner M, Vogl G, et al (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334PubMed Fratzl P, Groschner M, Vogl G, et al (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334PubMed
15.
go back to reference Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle x-ray scattering. Connect Tissue Res 34:247–254PubMed Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle x-ray scattering. Connect Tissue Res 34:247–254PubMed
16.
go back to reference Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486CrossRefPubMed Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486CrossRefPubMed
17.
go back to reference Camacho N, Rinnerthaler S, Paschalis E, et al (1999) Complementary information on bone ultrastruture from scanning small angle x-ray scattering and Fourier-transform infrared microspectroscopy. Bone 25:287–293CrossRefPubMed Camacho N, Rinnerthaler S, Paschalis E, et al (1999) Complementary information on bone ultrastruture from scanning small angle x-ray scattering and Fourier-transform infrared microspectroscopy. Bone 25:287–293CrossRefPubMed
18.
go back to reference Glimcher M (1997) The nature of the mineral phase in bone. In: Avioli LV, Krane SM (eds) Metabolic bone disease. Academic Press, San Diego, pp 23–50 Glimcher M (1997) The nature of the mineral phase in bone. In: Avioli LV, Krane SM (eds) Metabolic bone disease. Academic Press, San Diego, pp 23–50
19.
go back to reference Boivin G, Meunier P (2002) Effects of bisphosphonates on matrix mineralization. J Musculoskel Neuron Interact 2:538–543 Boivin G, Meunier P (2002) Effects of bisphosphonates on matrix mineralization. J Musculoskel Neuron Interact 2:538–543
20.
go back to reference Roschger P, Grabner B, Messmer P, et al (2001) Influence of intermittent PTH treatment on mineral distribution in the human ilium: a pair biopsy study before and after treatment. J Bone Min Res 17 (Suppl 1):S179 Roschger P, Grabner B, Messmer P, et al (2001) Influence of intermittent PTH treatment on mineral distribution in the human ilium: a pair biopsy study before and after treatment. J Bone Min Res 17 (Suppl 1):S179
21.
go back to reference Roschger P, Rinnerthaler S, Yates J, et al (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29:185–191CrossRefPubMed Roschger P, Rinnerthaler S, Yates J, et al (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29:185–191CrossRefPubMed
22.
go back to reference Nuzzo S, Lafage-Proust M, Martin-Badosa E, et al (2002) Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 17:1372–1382PubMed Nuzzo S, Lafage-Proust M, Martin-Badosa E, et al (2002) Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 17:1372–1382PubMed
23.
go back to reference Ott S, Oleksik A, Lu Y, Harper K, Lips P (2002) Bone histomorphometric and biochemical marker results of a 2-year placebo-controlled trial of raloxifene in postmenopausal women. J Bone Miner Res 17:341–348PubMed Ott S, Oleksik A, Lu Y, Harper K, Lips P (2002) Bone histomorphometric and biochemical marker results of a 2-year placebo-controlled trial of raloxifene in postmenopausal women. J Bone Miner Res 17:341–348PubMed
Metadata
Title
Methodological considerations in measurement of bone mineral content
Authors
Georges Boivin
Pierre J. Meunier
Publication date
01-09-2003
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue Special Issue 5/2003
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-003-1469-1

Other articles of this Special Issue 5/2003

Osteoporosis International 5/2003 Go to the issue