Skip to main content
Top
Published in: International Urogynecology Journal 2/2017

01-02-2017 | Original Article

The myth: in vivo degradation of polypropylene-based meshes

Authors: Shelby F. Thames, Joshua B. White, Kevin L. Ong

Published in: International Urogynecology Journal | Issue 2/2017

Login to get access

Abstract

Introduction and hypothesis

Polypropylene is a base polymer used in biomaterial applications, including sutures and mesh products, for the treatment of pelvic organ prolapse, stress urinary incontinence, and hernia repairs. Previous studies have dismissed the value of formulation additives employed in polypropylene, and the importance and necessity of an effective mesh explant cleaning protocol when characterizing explanted devices. However, both are critical to understanding the alleged degradation of polypropylene-based meshes.

Methods

An effective, nondestructive, hydrolytic cleaning process, supplemented with light microscopy (LM), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) data, was used to evaluate 78 explanted Prolene meshes (with duration of implantation ranging from 0.4 to 11.7 years).

Results

The cleaning process exposed clean, unoxidized, nondegraded Prolene fibers with smooth surfaces and with no visible evidence of gradient-type or ductile damage. LM showed identical translucent and sometimes clear, cracked/flaking material on both blue and clear fibers, instead of clear cracked/flaking material on the clear fibers and blue cracked/flaking material on the blue fibers. FTIR confirmed progressive protein removal and loss of protein absorption intensity after each cleaning step.

Conclusions

Our effective cleaning of explanted Prolene meshes and subsequent analyses showed that they did not degrade in vivo, confirming the in vivo stability of properly formulated polypropylene. Instead, the cracked layer that some researchers have identified as degraded Prolene is an adsorbed protein–formaldehyde coating, resulting from the well-established formalin–protein fixation process, which occurs immediately upon placing an explant in formalin.
Literature
1.
go back to reference Usher FC. Hernia repair with knitted polypropylene mesh. Surg Gynecol Obstet. 1963;117:239–40.PubMed Usher FC. Hernia repair with knitted polypropylene mesh. Surg Gynecol Obstet. 1963;117:239–40.PubMed
2.
go back to reference Julian TM. The efficacy of Marlex mesh in the repair of severe, recurrent vaginal prolapse of the anterior midvaginal wall. Am J Obstet Gynecol. 1996;175(6):1472–5.CrossRefPubMed Julian TM. The efficacy of Marlex mesh in the repair of severe, recurrent vaginal prolapse of the anterior midvaginal wall. Am J Obstet Gynecol. 1996;175(6):1472–5.CrossRefPubMed
5.
go back to reference Clavé A, Yahi H, Hammou JC, Montanari S, Gounon P, et al. Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int Urogynecol J. 2010;21(3):261–70.CrossRefPubMed Clavé A, Yahi H, Hammou JC, Montanari S, Gounon P, et al. Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int Urogynecol J. 2010;21(3):261–70.CrossRefPubMed
6.
go back to reference Costello CR, Bachman SL, Ramshaw BJ, Grant SA. Materials characterization of explanted polypropylene hernia meshes. J Biomed Mater Res B Appl Biomater. 2007;83(1):44–9.CrossRefPubMed Costello CR, Bachman SL, Ramshaw BJ, Grant SA. Materials characterization of explanted polypropylene hernia meshes. J Biomed Mater Res B Appl Biomater. 2007;83(1):44–9.CrossRefPubMed
7.
go back to reference Cozad MJ, Grant DA, Bachman SL, Grant DN, Ramshaw BJ, et al. Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis. J Biomed Mater Res B Appl Biomater. 2010;94(2):455–62.PubMed Cozad MJ, Grant DA, Bachman SL, Grant DN, Ramshaw BJ, et al. Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis. J Biomed Mater Res B Appl Biomater. 2010;94(2):455–62.PubMed
8.
go back to reference Guelcher SA, Dunn RF. Oxidative degradation of polypropylene pelvic mesh in vitro. Int Urogynecol J. 2015;26 Suppl 1:S23–174. Guelcher SA, Dunn RF. Oxidative degradation of polypropylene pelvic mesh in vitro. Int Urogynecol J. 2015;26 Suppl 1:S23–174.
10.
go back to reference Imel A, Malmgren T, Dadmun M, Gido S, Mays J. In vivo oxidative degradation of polypropylene pelvic mesh. Biomaterials. 2015;73:131–41.CrossRefPubMed Imel A, Malmgren T, Dadmun M, Gido S, Mays J. In vivo oxidative degradation of polypropylene pelvic mesh. Biomaterials. 2015;73:131–41.CrossRefPubMed
11.
go back to reference Mary C, Marois Y, King MW, Laroche G, Douville Y, et al. Comparison of the in vivo behavior of polyvinylidene fluoride and polypropylene sutures used in vascular surgery. ASAIO J. 1998;44(3):199–206.CrossRefPubMed Mary C, Marois Y, King MW, Laroche G, Douville Y, et al. Comparison of the in vivo behavior of polyvinylidene fluoride and polypropylene sutures used in vascular surgery. ASAIO J. 1998;44(3):199–206.CrossRefPubMed
12.
go back to reference Wood AJ, Cozad MJ, Grant DA, Ostdiek AM, Bachman SL, et al. Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient. J Mater Sci Mater Med. 2013;24(4):1113–22.CrossRefPubMedPubMedCentral Wood AJ, Cozad MJ, Grant DA, Ostdiek AM, Bachman SL, et al. Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient. J Mater Sci Mater Med. 2013;24(4):1113–22.CrossRefPubMedPubMedCentral
13.
go back to reference Kyriakides TR. Molecular events at tissue-biomaterial interface. In Badylak SF, editor. Host response to biomaterials. Amsterdam: Elsevier; 2015. Kyriakides TR. Molecular events at tissue-biomaterial interface. In Badylak SF, editor. Host response to biomaterials. Amsterdam: Elsevier; 2015.
14.
go back to reference Baxter RM, Steinbeck MJ, Tipper JL, Parvizi J, Marcolongo M, et al. Comparison of periprosthetic tissue digestion methods for ultra-high molecular weight polyethylene wear debris extraction. J Biomed Mater Res B Appl Biomater. 2009;91(1):409–18.CrossRefPubMedPubMedCentral Baxter RM, Steinbeck MJ, Tipper JL, Parvizi J, Marcolongo M, et al. Comparison of periprosthetic tissue digestion methods for ultra-high molecular weight polyethylene wear debris extraction. J Biomed Mater Res B Appl Biomater. 2009;91(1):409–18.CrossRefPubMedPubMedCentral
15.
go back to reference Puchtler H, Meloan SN. On the chemistry of formaldehyde fixation and its effects on immunohistochemical reactions. Histochemistry. 1985;82(3):201–4.CrossRefPubMed Puchtler H, Meloan SN. On the chemistry of formaldehyde fixation and its effects on immunohistochemical reactions. Histochemistry. 1985;82(3):201–4.CrossRefPubMed
16.
go back to reference Zhang Z, King MW, How TV, Laroche G, Guidoin R. Chemical and morphological analysis of explanted polyurethane vascular prostheses: the challenge of removing fixed adhering tissue. Biomaterials. 1996;17(19):1843–8.CrossRefPubMed Zhang Z, King MW, How TV, Laroche G, Guidoin R. Chemical and morphological analysis of explanted polyurethane vascular prostheses: the challenge of removing fixed adhering tissue. Biomaterials. 1996;17(19):1843–8.CrossRefPubMed
17.
go back to reference O’Faolain E, Hunter M, Byrne J, Kellehan P, McNamara M. A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vib Spectrosc. 2005;38:121–7.CrossRef O’Faolain E, Hunter M, Byrne J, Kellehan P, McNamara M. A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vib Spectrosc. 2005;38:121–7.CrossRef
18.
go back to reference Al-Malaika S. Photostabilizers. In: Karger-Kocsis J, editor. Polypropylene—an A–Z Reference. Dordrecht: Springer; 1999. Al-Malaika S. Photostabilizers. In: Karger-Kocsis J, editor. Polypropylene—an A–Z Reference. Dordrecht: Springer; 1999.
19.
go back to reference Liebert TC, Chartoff RP, Cosgrove SL, McCuskey RS. Subcutaneous implants of polypropylene filaments. J Biomed Mater Res. 1976;10(6):939–51.CrossRefPubMed Liebert TC, Chartoff RP, Cosgrove SL, McCuskey RS. Subcutaneous implants of polypropylene filaments. J Biomed Mater Res. 1976;10(6):939–51.CrossRefPubMed
20.
go back to reference Williams DF. Biodegradation of surgical polymers. J Mater Sci. 1982;17(5):1233–46.CrossRef Williams DF. Biodegradation of surgical polymers. J Mater Sci. 1982;17(5):1233–46.CrossRef
21.
go back to reference Williams DF. Mechanisms of biodegradation of implantable polymers. Clin Mater. 1992;10(1–2):9–12.CrossRefPubMed Williams DF. Mechanisms of biodegradation of implantable polymers. Clin Mater. 1992;10(1–2):9–12.CrossRefPubMed
22.
go back to reference American Society for Testing and Materials. ASTM F561-05a: Standard practice for retrieval and analysis of medical devices, and associated tissues and fluids. West Conshocken: ASTM International; 2005. American Society for Testing and Materials. ASTM F561-05a: Standard practice for retrieval and analysis of medical devices, and associated tissues and fluids. West Conshocken: ASTM International; 2005.
23.
go back to reference Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, et al. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials. 2000;21(23):2461–74.CrossRefPubMed Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, et al. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials. 2000;21(23):2461–74.CrossRefPubMed
24.
go back to reference Bhargava R, Wang SQ, Koenig JL. FTIR microspectroscopy of polymeric systems. Adv Polym Sci. 2003;163:137–91.CrossRef Bhargava R, Wang SQ, Koenig JL. FTIR microspectroscopy of polymeric systems. Adv Polym Sci. 2003;163:137–91.CrossRef
25.
go back to reference Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin Shanghai. 2007;39(8):549–59.CrossRefPubMed Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin Shanghai. 2007;39(8):549–59.CrossRefPubMed
26.
go back to reference Gahleitner M, Fiebig J. Long term properties and lifetime prediction for polypropylene. In: Karger-Kocsis J, editor. Polypropylene—an A-Z reference. Dordrecht: Springer; 1999. Gahleitner M, Fiebig J. Long term properties and lifetime prediction for polypropylene. In: Karger-Kocsis J, editor. Polypropylene—an A-Z reference. Dordrecht: Springer; 1999.
27.
go back to reference Lester SC. Manual of surgical pathology. 3rd ed. Philadelphia: Saunders; 2010. Lester SC. Manual of surgical pathology. 3rd ed. Philadelphia: Saunders; 2010.
28.
go back to reference Kerns MJ, Darst MA, Olsen TG, Fenster M, Hall P, et al. Shrinkage of cutaneous specimens: formalin or other factors involved? J Cutan Pathol. 2008;35(12):1093–6.CrossRefPubMed Kerns MJ, Darst MA, Olsen TG, Fenster M, Hall P, et al. Shrinkage of cutaneous specimens: formalin or other factors involved? J Cutan Pathol. 2008;35(12):1093–6.CrossRefPubMed
29.
go back to reference Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J. 2006;90(10):3762–73.CrossRefPubMedPubMedCentral Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J. 2006;90(10):3762–73.CrossRefPubMedPubMedCentral
30.
go back to reference Sanderson C, Emmanuel J, Emmanual J, Campbell P. A historical review of paraffin and its development as an embedding medium. J Histotechnol. 1988;11(1):61–3.CrossRef Sanderson C, Emmanuel J, Emmanual J, Campbell P. A historical review of paraffin and its development as an embedding medium. J Histotechnol. 1988;11(1):61–3.CrossRef
31.
go back to reference Dobrin PB. Effect of histologic preparation on the cross-sectional area of arterial rings. J Surg Res. 1996;61(2):413–5.CrossRefPubMed Dobrin PB. Effect of histologic preparation on the cross-sectional area of arterial rings. J Surg Res. 1996;61(2):413–5.CrossRefPubMed
33.
go back to reference Ward KL, Hilton P, UK and Ireland TVT Trial Group. A prospective multicenter randomized trial of tension-free vaginal tape and colposuspension for primary urodynamic stress incontinence: two-year follow-up. Am J Obstet Gynecol. 2004;190(2):324–31.CrossRefPubMed Ward KL, Hilton P, UK and Ireland TVT Trial Group. A prospective multicenter randomized trial of tension-free vaginal tape and colposuspension for primary urodynamic stress incontinence: two-year follow-up. Am J Obstet Gynecol. 2004;190(2):324–31.CrossRefPubMed
34.
go back to reference Feiner B, Jelovsek JE, Maher C. Efficacy and safety of transvaginal mesh kits in the treatment of prolapse of the vaginal apex: a systematic review. BJOG. 2009;116(1):15–24.CrossRefPubMed Feiner B, Jelovsek JE, Maher C. Efficacy and safety of transvaginal mesh kits in the treatment of prolapse of the vaginal apex: a systematic review. BJOG. 2009;116(1):15–24.CrossRefPubMed
35.
go back to reference Halaska M, Maxova K, Sottner O, Svabik K, Mlcoch M, et al. A multicenter, randomized, prospective, controlled study comparing sacrospinous fixation and transvaginal mesh in the treatment of posthysterectomy vaginal vault prolapse. Am J Obstet Gynecol. 2012;207(4):301.e1–7.CrossRef Halaska M, Maxova K, Sottner O, Svabik K, Mlcoch M, et al. A multicenter, randomized, prospective, controlled study comparing sacrospinous fixation and transvaginal mesh in the treatment of posthysterectomy vaginal vault prolapse. Am J Obstet Gynecol. 2012;207(4):301.e1–7.CrossRef
36.
go back to reference Altman D, Vayrynen T, Engh ME, Axelsen S, Falconer C, et al. Anterior colporrhaphy versus transvaginal mesh for pelvic-organ prolapse. N Engl J Med. 2011;364(19):1826–36.CrossRefPubMed Altman D, Vayrynen T, Engh ME, Axelsen S, Falconer C, et al. Anterior colporrhaphy versus transvaginal mesh for pelvic-organ prolapse. N Engl J Med. 2011;364(19):1826–36.CrossRefPubMed
37.
go back to reference Miller D, Lucente V, Babin E, Beach P, Jones P, et al. Prospective clinical assessment of the transvaginal mesh technique for treatment of pelvic organ prolapse-5-year results. Female Pelvic Med Reconstr Surg. 2011;17(3):139–43.CrossRefPubMed Miller D, Lucente V, Babin E, Beach P, Jones P, et al. Prospective clinical assessment of the transvaginal mesh technique for treatment of pelvic organ prolapse-5-year results. Female Pelvic Med Reconstr Surg. 2011;17(3):139–43.CrossRefPubMed
38.
go back to reference Jacquetin B, Fatton B, Rosenthal C, Clave H, Debodinance P, et al. Total transvaginal mesh (TVM) technique for treatment of pelvic organ prolapse: a 3-year prospective follow-up study. Int Urogynecol J. 2010;21(12):1455–62.CrossRefPubMed Jacquetin B, Fatton B, Rosenthal C, Clave H, Debodinance P, et al. Total transvaginal mesh (TVM) technique for treatment of pelvic organ prolapse: a 3-year prospective follow-up study. Int Urogynecol J. 2010;21(12):1455–62.CrossRefPubMed
Metadata
Title
The myth: in vivo degradation of polypropylene-based meshes
Authors
Shelby F. Thames
Joshua B. White
Kevin L. Ong
Publication date
01-02-2017
Publisher
Springer London
Published in
International Urogynecology Journal / Issue 2/2017
Print ISSN: 0937-3462
Electronic ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-016-3131-4

Other articles of this Issue 2/2017

International Urogynecology Journal 2/2017 Go to the issue