Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 3/2020

01-03-2020 | Osteoarthrosis | KNEE

Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature

Authors: Patrick Orth, Liang Gao, Henning Madry

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 3/2020

Login to get access

Abstract

Purpose

To systematically review and evaluate novel clinical data following microfracture treatment of knee articular cartilage defects.

Methods

A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases for clinical trials on microfracture treatment, published between 2013 and 2018. Titles, abstracts, and articles were reviewed, and data concerning patient demographics, study design, pre-, intra-, and postoperative findings were extracted. PRISMA guidelines were applied. The methodological quality of the included studies was analyzed by the modified Coleman Methodology Score (CMS), and aggregate data were generated.

Results

Eighteen studies including 1830 defects (1759 patients) were included. Of them, 8 (59% of patients) were cohort studies without a comparison group. Overall study quality was moderate (mean total CMS: 64 points), mainly due to low patient numbers, short follow-up periods, lack of control groups and structural repair tissue evaluation, and inhomogeneity in outcome parameters. Microfracture treatment of full-thickness articular cartilage defects (3.4 ± 2.1 cm2) was performed at 43.4 ± 68.0 months of symptom duration. Postoperative assessment at 79.5 ± 27.2 months revealed failure rates of 11–27% within 5 years and 6–32% at 10 years. Imaging analysis was conducted in 10 studies, second-look arthroscopies were reported twice (n = 205 patients) and revealed well integrated fibrocartilaginous repair tissue.

Conclusions

Microfracture provides good function and pain relief at the mid-term and clinically largely satisfying results thereafter. Standardized, high-quality future study designs will better refine optimal indications for microfracture in the context of cartilage repair strategies.

Level of evidence

This systematic review is based on studies with levels of evidence ranging between I and IV (see results section and Table). Therefore, and according to this journals Instructions for Authors (SYSTEMATIC REVIEWS AND META-ANALYSES are assigned a level of evidence equivalent to the lowest level of evidence used from the manuscripts analysed), level of evidence is IV.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bae DK, Song SJ, Yoon KH, Heo DB, Kim TJ (2013) Survival analysis of microfracture in the osteoarthritic knee-minimum 10-year follow-up. Arthroscopy 29:244–250PubMed Bae DK, Song SJ, Yoon KH, Heo DB, Kim TJ (2013) Survival analysis of microfracture in the osteoarthritic knee-minimum 10-year follow-up. Arthroscopy 29:244–250PubMed
2.
go back to reference Behery O, Siston RA, Harris JD, Flanigan DC (2014) Treatment of cartilage defects of the knee: expanding on the existing algorithm. Clin J Sport Med 24:21–30PubMed Behery O, Siston RA, Harris JD, Flanigan DC (2014) Treatment of cartilage defects of the knee: expanding on the existing algorithm. Clin J Sport Med 24:21–30PubMed
3.
go back to reference Brittberg M, Recker D, Ilgenfritz J, Saris DBF (2018) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med 46:1343–1351PubMed Brittberg M, Recker D, Ilgenfritz J, Saris DBF (2018) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med 46:1343–1351PubMed
4.
go back to reference Campbell AB, Pineda M, Harris JD, Flanigan DC (2017) Return to sport after articular cartilage repair in athletes’ knees: a systematic review. Arthroscopy 32:651–668 Campbell AB, Pineda M, Harris JD, Flanigan DC (2017) Return to sport after articular cartilage repair in athletes’ knees: a systematic review. Arthroscopy 32:651–668
5.
go back to reference Chalmers PN, Vigneswaran H, Harris JD, Cole BJ (2013) Activity-related outcomes of articular cartilage surgery: a systematic review. Cartilage 4:193–203PubMedPubMedCentral Chalmers PN, Vigneswaran H, Harris JD, Cole BJ (2013) Activity-related outcomes of articular cartilage surgery: a systematic review. Cartilage 4:193–203PubMedPubMedCentral
6.
go back to reference Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD (2000) Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports 10:2–11PubMed Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD (2000) Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports 10:2–11PubMed
7.
go back to reference Dasar U, Gursoy S, Akkaya M, Algin O, Isik C, Bozkurt M (2016) Microfracture technique versus carbon fibre rod implantation for treatment of knee articular cartilage lesions. J Orthop Surg (Hong Kong) 24:188–193 Dasar U, Gursoy S, Akkaya M, Algin O, Isik C, Bozkurt M (2016) Microfracture technique versus carbon fibre rod implantation for treatment of knee articular cartilage lesions. J Orthop Surg (Hong Kong) 24:188–193
8.
go back to reference Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS (2017) Surgical treatments of cartilage defects of the knee: Systematic review of randomised controlled trials. Knee 24:508–517PubMed Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS (2017) Surgical treatments of cartilage defects of the knee: Systematic review of randomised controlled trials. Knee 24:508–517PubMed
9.
go back to reference Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H (2014) Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med 42:2741–2750PubMed Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H (2014) Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med 42:2741–2750PubMed
10.
go back to reference Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH (2010) Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc 42:1795–1801PubMed Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH (2010) Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc 42:1795–1801PubMed
12.
go back to reference Gobbi A, Karnatzikos G, Kumar A (2014) Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 22:1986–1996PubMed Gobbi A, Karnatzikos G, Kumar A (2014) Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 22:1986–1996PubMed
13.
go back to reference Goyal D, Keyhani S, Lee EH, Hui JH (2013) Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy 29:1579–1588PubMed Goyal D, Keyhani S, Lee EH, Hui JH (2013) Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy 29:1579–1588PubMed
14.
go back to reference Gracitelli GC, Moraes VY, Franciozi CE, Luzo MV, Belloti JC (2016) Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults. Cochrane Database Syst Rev 9:CD010675PubMed Gracitelli GC, Moraes VY, Franciozi CE, Luzo MV, Belloti JC (2016) Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults. Cochrane Database Syst Rev 9:CD010675PubMed
15.
go back to reference Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Jt Surg Am 89:2105–2112 Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Jt Surg Am 89:2105–2112
16.
go back to reference Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Ludvigsen TC, Loken S, Solheim E, Strand T, Johansen O (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 98:1332–1339PubMed Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Ludvigsen TC, Loken S, Solheim E, Strand T, Johansen O (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 98:1332–1339PubMed
17.
go back to reference Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M (2009) Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 37:33–41PubMed Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M (2009) Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 37:33–41PubMed
18.
go back to reference Kowalczuk M, Musahl V, Fu FH (2018) Cochrane in CORR(R): surgical interventions (Microfracture, Drilling, Mosaicplasty, and Allograft Transplantation) for treating isolated cartilage defects of the knee in adults. Clin Orthop Relat Res 476:16–18PubMed Kowalczuk M, Musahl V, Fu FH (2018) Cochrane in CORR(R): surgical interventions (Microfracture, Drilling, Mosaicplasty, and Allograft Transplantation) for treating isolated cartilage defects of the knee in adults. Clin Orthop Relat Res 476:16–18PubMed
19.
go back to reference Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14:1119–1125PubMed Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14:1119–1125PubMed
20.
go back to reference Madry H, Gao L, Eichler H, Orth P, Cucchiarini M (2017) Bone marrow aspirate concentrate-enhanced marrow stimulation of chondral defects. Stem Cells Int 2017:1609685PubMedPubMedCentral Madry H, Gao L, Eichler H, Orth P, Cucchiarini M (2017) Bone marrow aspirate concentrate-enhanced marrow stimulation of chondral defects. Stem Cells Int 2017:1609685PubMedPubMedCentral
21.
go back to reference Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R, Berruto M, Engebretsen L, Filardo G, Angele P (2016) Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 18:419–433 Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R, Berruto M, Engebretsen L, Filardo G, Angele P (2016) Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 18:419–433
22.
go back to reference Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18:419–433PubMed Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18:419–433PubMed
23.
go back to reference McCormick F, Harris JD, Abrams GD, Frank R, Gupta A, Hussey K, Wilson H, Bach B Jr, Cole B (2014) Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy 30:222–226PubMed McCormick F, Harris JD, Abrams GD, Frank R, Gupta A, Hussey K, Wilson H, Bach B Jr, Cole B (2014) Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy 30:222–226PubMed
24.
go back to reference Mithoefer K, Acuna M (2013) Clinical outcomes assessment for articular cartilage restoration. J Knee Surg 26:31–40PubMed Mithoefer K, Acuna M (2013) Clinical outcomes assessment for articular cartilage restoration. J Knee Surg 26:31–40PubMed
25.
go back to reference Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37:2053–2063PubMed Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37:2053–2063PubMed
26.
go back to reference Mithoefer K, Venugopal V, Manaqibwala M (2016) Incidence, degree, and clinical effect of subchondral bone overgrowth after microfracture in the knee. Am J Sports Med 44:2057–2063PubMed Mithoefer K, Venugopal V, Manaqibwala M (2016) Incidence, degree, and clinical effect of subchondral bone overgrowth after microfracture in the knee. Am J Sports Med 44:2057–2063PubMed
27.
go back to reference Montgomery SR, Foster BD, Ngo SS, Terrell RD, Wang JC, Petrigliano FA, McAllister DR (2014) Trends in the surgical treatment of articular cartilage defects of the knee in the United States. Knee Surg Sports Traumatol Arthrosc 22:2070–2075PubMed Montgomery SR, Foster BD, Ngo SS, Terrell RD, Wang JC, Petrigliano FA, McAllister DR (2014) Trends in the surgical treatment of articular cartilage defects of the knee in the United States. Knee Surg Sports Traumatol Arthrosc 22:2070–2075PubMed
28.
go back to reference Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, Rodeo SA (2014) Restoration of articular cartilage. J Bone Jt Surg Am 96:336–344 Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, Rodeo SA (2014) Restoration of articular cartilage. J Bone Jt Surg Am 96:336–344
29.
go back to reference Mundi R, Bedi A, Chow L, Crouch S, Simunovic N, Sibilsky Enselman E, Ayeni OR (2016) Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am J Sports Med 44:1888–1895PubMed Mundi R, Bedi A, Chow L, Crouch S, Simunovic N, Sibilsky Enselman E, Ayeni OR (2016) Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am J Sports Med 44:1888–1895PubMed
30.
go back to reference Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M, Baumann M, Bosch U, Erggelet C, Fickert S, Gebhard H, Gelse K, Gunther D, Hoburg A, Kasten P, Kolombe T, Madry H, Marlovits S, Meenen NM, Muller PE, Noth U, Petersen JP, Pietschmann M, Richter W, Rolauffs B, Rhunau K, Schewe B, Steinert A, Steinwachs MR, Welsch GH, Zinser W, Fritz J (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 23:426–435PubMed Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M, Baumann M, Bosch U, Erggelet C, Fickert S, Gebhard H, Gelse K, Gunther D, Hoburg A, Kasten P, Kolombe T, Madry H, Marlovits S, Meenen NM, Muller PE, Noth U, Petersen JP, Pietschmann M, Richter W, Rolauffs B, Rhunau K, Schewe B, Steinert A, Steinwachs MR, Welsch GH, Zinser W, Fritz J (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 23:426–435PubMed
31.
go back to reference Orth P, Cucchiarini M, Kohn D, Madry H (2013) Alterations of the subchondral bone in osteochondral repair–translational data and clinical evidence. Eur Cell Mater 25:299–316PubMed Orth P, Cucchiarini M, Kohn D, Madry H (2013) Alterations of the subchondral bone in osteochondral repair–translational data and clinical evidence. Eur Cell Mater 25:299–316PubMed
32.
go back to reference Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H (2016) Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med 44:209–219PubMed Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H (2016) Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med 44:209–219PubMed
33.
go back to reference Orth P, Madry H (2015) Advancement of the subchondral bone plate in translational models of osteochondral repair—implications for tissue engineering approaches. Tissue Eng Part B Rev 21:504–520PubMed Orth P, Madry H (2015) Advancement of the subchondral bone plate in translational models of osteochondral repair—implications for tissue engineering approaches. Tissue Eng Part B Rev 21:504–520PubMed
34.
go back to reference Petri M, Broese M, Simon A, Liodakis E, Ettinger M, Guenther D, Zeichen J, Krettek C, Jagodzinski M, Haasper C (2013) CaReS (MACT) versus microfracture in treating symptomatic patellofemoral cartilage defects: a retrospective matched-pair analysis. J Orthop Sci 18:38–44PubMed Petri M, Broese M, Simon A, Liodakis E, Ettinger M, Guenther D, Zeichen J, Krettek C, Jagodzinski M, Haasper C (2013) CaReS (MACT) versus microfracture in treating symptomatic patellofemoral cartilage defects: a retrospective matched-pair analysis. J Orthop Sci 18:38–44PubMed
35.
go back to reference Rotterud JH, Sivertsen EA, Forssblad M, Engebretsen L, Aroen A (2013) Effect of meniscal and focal cartilage lesions on patient-reported outcome after anterior cruciate ligament reconstruction: a nationwide cohort study from Norway and Sweden of 8476 patients with 2-year follow-up. Am J Sports Med 41:535–543PubMed Rotterud JH, Sivertsen EA, Forssblad M, Engebretsen L, Aroen A (2013) Effect of meniscal and focal cartilage lesions on patient-reported outcome after anterior cruciate ligament reconstruction: a nationwide cohort study from Norway and Sweden of 8476 patients with 2-year follow-up. Am J Sports Med 41:535–543PubMed
36.
go back to reference Salzmann GM, Sah B, Sudkamp NP, Niemeyer P (2013) Clinical outcome following the first-line, single lesion microfracture at the knee joint. Arch Orthop Trauma Surg 133:303–310PubMed Salzmann GM, Sah B, Sudkamp NP, Niemeyer P (2013) Clinical outcome following the first-line, single lesion microfracture at the knee joint. Arch Orthop Trauma Surg 133:303–310PubMed
37.
go back to reference Salzmann GM, Sah B, Sudkamp NP, Niemeyer P (2013) Reoperative characteristics after microfracture of knee cartilage lesions in 454 patients. Knee Surg Sports Traumatol Arthrosc 21:365–371PubMed Salzmann GM, Sah B, Sudkamp NP, Niemeyer P (2013) Reoperative characteristics after microfracture of knee cartilage lesions in 454 patients. Knee Surg Sports Traumatol Arthrosc 21:365–371PubMed
38.
go back to reference Sanders TL, Pareek A, Obey MR, Johnson NR, Carey JL, Stuart MJ, Krych AJ (2017) High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am J Sports Med 45:1799–1805PubMed Sanders TL, Pareek A, Obey MR, Johnson NR, Carey JL, Stuart MJ, Krych AJ (2017) High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am J Sports Med 45:1799–1805PubMed
39.
go back to reference Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, Emans P, Podskubka A, Tsuchida A, Kili S, Levine D, Brittberg M (2014) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 42:1384–1394PubMed Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, Emans P, Podskubka A, Tsuchida A, Kili S, Levine D, Brittberg M (2014) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 42:1384–1394PubMed
40.
go back to reference Saris DB, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, Luyten FP (2009) Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 37(Suppl 1):10S–19SPubMed Saris DB, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, Luyten FP (2009) Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 37(Suppl 1):10S–19SPubMed
41.
go back to reference Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Jt Surg Am 75:532–553 Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Jt Surg Am 75:532–553
42.
go back to reference Shive MS, Restrepo A, Totterman S, Tamez-Pena J, Schreyer E, Steinwachs M, Stanish WD (2014) Quantitative 3D MRI reveals limited intra-lesional bony overgrowth at 1 year after microfracture-based cartilage repair. Osteoarthr Cartil 22:800–804 Shive MS, Restrepo A, Totterman S, Tamez-Pena J, Schreyer E, Steinwachs M, Stanish WD (2014) Quantitative 3D MRI reveals limited intra-lesional bony overgrowth at 1 year after microfracture-based cartilage repair. Osteoarthr Cartil 22:800–804
43.
go back to reference Solheim E, Hegna J, Inderhaug E (2017) Long-term clinical follow-up of microfracture versus mosaicplasty in articular cartilage defects of medial femoral condyle. Knee 24:1402–1407PubMed Solheim E, Hegna J, Inderhaug E (2017) Long-term clinical follow-up of microfracture versus mosaicplasty in articular cartilage defects of medial femoral condyle. Knee 24:1402–1407PubMed
44.
go back to reference Solheim E, Hegna J, Inderhaug E, Oyen J, Harlem T, Strand T (2016) Results at 10–14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 24:1587–1593PubMed Solheim E, Hegna J, Inderhaug E, Oyen J, Harlem T, Strand T (2016) Results at 10–14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 24:1587–1593PubMed
45.
go back to reference Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E (2018) Randomized study of long-term (15–17 Years) outcome after microfracture versus mosaicplasty in knee articular cartilage Defects. Am J Sports Med 46:826–831PubMed Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E (2018) Randomized study of long-term (15–17 Years) outcome after microfracture versus mosaicplasty in knee articular cartilage Defects. Am J Sports Med 46:826–831PubMed
46.
go back to reference Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Restrepo A, Shive MS (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Jt Surg Am 95:1640–1650 Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Restrepo A, Shive MS (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Jt Surg Am 95:1640–1650
47.
go back to reference Steadman JR, Briggs KK, Matheny LM, Guillet A, Hanson CM, Willimon SC (2015) Outcomes following microfracture of full-thickness articular cartilage lesions of the knee in adolescent patients. J Knee Surg 28:145–150PubMed Steadman JR, Briggs KK, Matheny LM, Guillet A, Hanson CM, Willimon SC (2015) Outcomes following microfracture of full-thickness articular cartilage lesions of the knee in adolescent patients. J Knee Surg 28:145–150PubMed
48.
go back to reference Steadman JR, Hanson CM, Briggs KK, Matheny LM, James EW, Guillet A (2014) Outcomes after knee microfracture of chondral defects in alpine ski racers. J Knee Surg 27:407–410PubMed Steadman JR, Hanson CM, Briggs KK, Matheny LM, James EW, Guillet A (2014) Outcomes after knee microfracture of chondral defects in alpine ski racers. J Knee Surg 27:407–410PubMed
49.
go back to reference Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391:S362–369 Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391:S362–369
50.
go back to reference Ulstein S, Aroen A, Rotterud JH, Loken S, Engebretsen L, Heir S (2014) Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 22:1207–1215PubMedPubMedCentral Ulstein S, Aroen A, Rotterud JH, Loken S, Engebretsen L, Heir S (2014) Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 22:1207–1215PubMedPubMedCentral
51.
go back to reference Ulstein S, Bredland K, Aroen A, Engebretsen L, Rotterud JH (2017) No negative effect on patient-reported outcome of concomitant cartilage lesions 5–9 years after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:1482–1488PubMed Ulstein S, Bredland K, Aroen A, Engebretsen L, Rotterud JH (2017) No negative effect on patient-reported outcome of concomitant cartilage lesions 5–9 years after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:1482–1488PubMed
52.
go back to reference Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39:2566–2574PubMed Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39:2566–2574PubMed
53.
go back to reference Von Keudell A, Atzwanger J, Forstner R, Resch H, Hoffelner T, Mayer M (2011) Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study. Eur J Radiol 81:1618–1624 Von Keudell A, Atzwanger J, Forstner R, Resch H, Hoffelner T, Mayer M (2011) Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study. Eur J Radiol 81:1618–1624
Metadata
Title
Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature
Authors
Patrick Orth
Liang Gao
Henning Madry
Publication date
01-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 3/2020
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-019-05359-9

Other articles of this Issue 3/2020

Knee Surgery, Sports Traumatology, Arthroscopy 3/2020 Go to the issue