Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 1/2019

Open Access 01-01-2019 | Knee

Predicting meniscal tear stability across knee-joint flexion using finite-element analysis

Authors: Angela E. Kedgley, Teng-Hui Saw, Neil A. Segal, Ulrich N. Hansen, Anthony M. J. Bull, Spyros D. Masouros

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 1/2019

Login to get access

Abstract

Purpose

To analyse the stress distribution through longitudinal and radial meniscal tears in three tear locations in weight-bearing conditions and use it to ascertain the impact of tear location and type on the potential for healing of meniscal tears.

Methods

Subject-specific finite-element models of a healthy knee under static loading at 0°, 20°, and 30° knee flexion were developed from unloaded magnetic resonance images and weight-bearing, contrast-enhanced computed tomography images. Simulations were then run after introducing tears into the anterior, posterior, and midsections of the menisci.

Results

Absolute differences between the displacements of anterior and posterior segments modelled in the intact state and those quantified from in vivo weight-bearing images were less than 0.5 mm. There were tear-location-dependent differences between hoop stress distributions along the inner and outer surfaces of longitudinal tears; the longitudinal tear surfaces were compressed together to the greatest degree in the lateral meniscus and were most consistently in compression on the midsections of both menisci. Radial tears resulted in an increase in stress at the tear apex and in a consistent small compression of the tear surfaces throughout the flexion range when in the posterior segment of the lateral meniscus.

Conclusions

Both the type of meniscal tear and its location within the meniscus influenced the stresses on the tear surfaces under weight bearing. Results agree with clinical observations and suggest reasons for the inverse correlation between longitudinal tear length and healing, the inferior healing ability of medial compared with lateral menisci, and the superior healing ability of radial tears in the posterior segment of the lateral meniscus compared with other radial tears. This study has shown that meniscal tear location in addition to type likely plays a crucial role in dictating the success of non-operative treatment of the menisci. This may be used in decision making regarding conservative or surgical management.
Literature
1.
go back to reference Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med 14:270–275CrossRefPubMed Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med 14:270–275CrossRefPubMed
2.
go back to reference Barrett GR, Field MH, Treacy SH, Ruff CG (1998) Clinical results of meniscus repair in patients 40 years and older. Arthroscopy 14:824–829CrossRefPubMed Barrett GR, Field MH, Treacy SH, Ruff CG (1998) Clinical results of meniscus repair in patients 40 years and older. Arthroscopy 14:824–829CrossRefPubMed
3.
go back to reference Bell JS, Winlove CP, Smith CW, Dehghani H (2009) Modeling the steady-state deformation of the solid phase of articular cartilage. Biomaterials 30:6394–6401CrossRefPubMed Bell JS, Winlove CP, Smith CW, Dehghani H (2009) Modeling the steady-state deformation of the solid phase of articular cartilage. Biomaterials 30:6394–6401CrossRefPubMed
4.
go back to reference Belzer J, Cannon W (1993) Meniscus tears: treatment in the stable and unstable knee. J Am Acad Orthop Surg 1:41–47CrossRefPubMed Belzer J, Cannon W (1993) Meniscus tears: treatment in the stable and unstable knee. J Am Acad Orthop Surg 1:41–47CrossRefPubMed
5.
go back to reference Boxheimer L, Lutz AM, Treiber K, Goepfert K, Crook DW, Marincek B, Weishaupt D (2004) MR imaging of the knee: position related changes of the menisci in asymptomatic volunteers. Invest Radiol 39:254–263CrossRefPubMed Boxheimer L, Lutz AM, Treiber K, Goepfert K, Crook DW, Marincek B, Weishaupt D (2004) MR imaging of the knee: position related changes of the menisci in asymptomatic volunteers. Invest Radiol 39:254–263CrossRefPubMed
6.
go back to reference Campbell SE, Sanders TG, Morrison WB (2001) MR imaging of meniscal cysts: incidence, location, and clinical significance. Am J Roentgenol 177:409–413CrossRef Campbell SE, Sanders TG, Morrison WB (2001) MR imaging of meniscal cysts: incidence, location, and clinical significance. Am J Roentgenol 177:409–413CrossRef
7.
go back to reference Cannon WD, Vittori JM (1987) The incidence of healing in arthroscopic meniscal repairs in anterior cruciate ligament-reconstructed knees versus stable knees. Am J Sports Med 20:176–181CrossRef Cannon WD, Vittori JM (1987) The incidence of healing in arthroscopic meniscal repairs in anterior cruciate ligament-reconstructed knees versus stable knees. Am J Sports Med 20:176–181CrossRef
8.
go back to reference Chen H-N, Yang K, Dong Q-R, Wang Y (2014) Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging. J Orthop Surg Res 9:65CrossRefPubMedPubMedCentral Chen H-N, Yang K, Dong Q-R, Wang Y (2014) Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging. J Orthop Surg Res 9:65CrossRefPubMedPubMedCentral
9.
go back to reference Fitzgibbons RE, Shelbourne KD (1991) “Aggressive” nontreatment of lateral meniscal tears seen during anterior cruciate ligament reconstruction. Am J Sports Med 23:156–159CrossRef Fitzgibbons RE, Shelbourne KD (1991) “Aggressive” nontreatment of lateral meniscal tears seen during anterior cruciate ligament reconstruction. Am J Sports Med 23:156–159CrossRef
11.
go back to reference Hauch KN, Villegas DF, Haut Donahue TL (2010) Geometry, time-dependent and failure properties of human meniscal attachments. J Biomech 43:463–468CrossRefPubMed Hauch KN, Villegas DF, Haut Donahue TL (2010) Geometry, time-dependent and failure properties of human meniscal attachments. J Biomech 43:463–468CrossRefPubMed
12.
go back to reference Haut Donahue TL, Hull ML, Rashid MM (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124:273CrossRef Haut Donahue TL, Hull ML, Rashid MM (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124:273CrossRef
13.
go back to reference Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2003) How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech 36:19–34CrossRefPubMed Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2003) How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech 36:19–34CrossRefPubMed
14.
go back to reference Hayes WC, Mockros LF (1971) Viscoelastic properties of human articular cartilage. J Appl Physiol 31:562–568CrossRefPubMed Hayes WC, Mockros LF (1971) Viscoelastic properties of human articular cartilage. J Appl Physiol 31:562–568CrossRefPubMed
15.
go back to reference Masouros SD, McDermott ID, Amis AA, Bull AMJ (2008) Biomechanics of the meniscus-meniscal ligament construct of the knee. Knee Surg Sport Traumatol Arthrosc 16:1121–1132CrossRef Masouros SD, McDermott ID, Amis AA, Bull AMJ (2008) Biomechanics of the meniscus-meniscal ligament construct of the knee. Knee Surg Sport Traumatol Arthrosc 16:1121–1132CrossRef
16.
go back to reference Mastrokalos DS, Papagelopoulos PJ, Mavrogenis AF, Hantes ME, Karachalios TS, Paessler HH (2005) Changes of meniscal interhorn distances: an in vivo magnetic resonance imaging study. Knee 12:441–446CrossRefPubMed Mastrokalos DS, Papagelopoulos PJ, Mavrogenis AF, Hantes ME, Karachalios TS, Paessler HH (2005) Changes of meniscal interhorn distances: an in vivo magnetic resonance imaging study. Knee 12:441–446CrossRefPubMed
17.
go back to reference McCarty EC, Marx RG, Wickiewicz TL (2000) Meniscal tears in the athlete: operative and nonoperative management. Phys Med Rehabil Clin North Am 11:867–880CrossRef McCarty EC, Marx RG, Wickiewicz TL (2000) Meniscal tears in the athlete: operative and nonoperative management. Phys Med Rehabil Clin North Am 11:867–880CrossRef
18.
go back to reference McDermott ID (2006) (ii) Meniscal tears. Curr Orthop 20:85–94 McDermott ID (2006) (ii) Meniscal tears. Curr Orthop 20:85–94
19.
go back to reference Mononen ME, Jurvelin JS, Korhonen RK (2013) Effects of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during the stance phase of the gait cycle—a 3D finite element study. J Orthop Res 31:1208–1217CrossRefPubMed Mononen ME, Jurvelin JS, Korhonen RK (2013) Effects of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during the stance phase of the gait cycle—a 3D finite element study. J Orthop Res 31:1208–1217CrossRefPubMed
20.
go back to reference Pedersen HD, Olsen LH, Arnorsdottir H (1995) Breed differences in the plasma renin activity and plasma aldosterone concentration of dogs. J Vet Med Ser A 42:435–441CrossRef Pedersen HD, Olsen LH, Arnorsdottir H (1995) Breed differences in the plasma renin activity and plasma aldosterone concentration of dogs. J Vet Med Ser A 42:435–441CrossRef
21.
go back to reference Peña E, Calvo B, Martínez MA, Palanca D, Doblaré M (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 20:498–507CrossRef Peña E, Calvo B, Martínez MA, Palanca D, Doblaré M (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 20:498–507CrossRef
22.
go back to reference Richards DP, Barber FA, Herbert M (2008) Meniscal tear biomechanics: loads across meniscal tears in human cadaveric knees. Orthopedics 31:347–350CrossRefPubMed Richards DP, Barber FA, Herbert M (2008) Meniscal tear biomechanics: loads across meniscal tears in human cadaveric knees. Orthopedics 31:347–350CrossRefPubMed
23.
go back to reference Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41:687–693CrossRefPubMed Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41:687–693CrossRefPubMed
24.
go back to reference Shelbourne KD, Heinrich J (2004) The long-term evaluation of lateral meniscus tears left in situ at the time of anterior cruciate ligament reconstruction. Arthroscopy 20:346–351CrossRefPubMed Shelbourne KD, Heinrich J (2004) The long-term evaluation of lateral meniscus tears left in situ at the time of anterior cruciate ligament reconstruction. Arthroscopy 20:346–351CrossRefPubMed
25.
go back to reference Shepherd DET, Seedhom BB (1999) The “instantaneous” compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 38:124–132CrossRefPubMed Shepherd DET, Seedhom BB (1999) The “instantaneous” compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 38:124–132CrossRefPubMed
26.
go back to reference Sommerlath KG (1991) Results of meniscal repair and partial meniscectomy in stable knees. Int Orthop 15:347–350CrossRefPubMed Sommerlath KG (1991) Results of meniscal repair and partial meniscectomy in stable knees. Int Orthop 15:347–350CrossRefPubMed
27.
go back to reference Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM (1999) Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br 81:37–41CrossRefPubMed Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM (1999) Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br 81:37–41CrossRefPubMed
28.
go back to reference Weiss CB, Lundberg M, Hamberg P, DeHaven KE, Gillquist J (1989) Non-operative treatment of meniscal tears. J Bone Joint Surg Am 71:811–822CrossRefPubMed Weiss CB, Lundberg M, Hamberg P, DeHaven KE, Gillquist J (1989) Non-operative treatment of meniscal tears. J Bone Joint Surg Am 71:811–822CrossRefPubMed
Metadata
Title
Predicting meniscal tear stability across knee-joint flexion using finite-element analysis
Authors
Angela E. Kedgley
Teng-Hui Saw
Neil A. Segal
Ulrich N. Hansen
Anthony M. J. Bull
Spyros D. Masouros
Publication date
01-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 1/2019
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-018-5090-4

Other articles of this Issue 1/2019

Knee Surgery, Sports Traumatology, Arthroscopy 1/2019 Go to the issue