Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 4/2017

01-04-2017 | Knee

Reconstructing the anterolateral ligament does not decrease rotational knee laxity in ACL-reconstructed knees

Authors: Kasper Stentz-Olesen, Emil Toft Nielsen, Sepp de Raedt, Peter Bo Jørgensen, Ole Gade Sørensen, Bart Kaptein, Kjeld Søballe, Maiken Stilling

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 4/2017

Login to get access

Abstract

Purpose

Little is known about the anterolateral ligament’s (ALL) influence on knee laxity. The purpose of this study was to investigate rotational knee laxity against a pure axial rotational stress using radiostereometric analysis (RSA) after cutting and reconstructing both the anterior cruciate ligament (ACL) and the ALL.

Methods

Eight human donor legs were positioned and stereoradiographically recorded at 0°, 30° and 60° of knee flexion using a motorised fixture, while an internally rotating force of 4 Nm was applied to the foot. Anterior–posterior and rotational laxity were investigated for knees with intact ligaments and compared with those observed after successive ACL and ALL resection and reconstruction.

Results

After cutting the ALL in ACL-deficient knees, the internal rotation was increased in all three knee flexion angles, 0° (p = 0.04), 30° (p = 0.03) and 60° (p < 0.01) by 1.0°, 1.6° and 2.5°, respectively. However, no decrease in laxity was found after reconstructing the ALL in ACL-reconstructed knees.

Conclusions

The ALL was confirmed as a stabiliser of internal rotation in ACL-deficient knees. However, reconstructing the ALL using a gracilis autograft tendon did not decrease the internal rotation laxity in the ACL-reconstructed knee. Based on the results of this study, we do not recommend reconstructing the ALL in ACL-reconstructed knees to decrease internal knee laxity.
Literature
1.
go back to reference Caterine S, Litchfield R, Johnson M, Chronik B, Getgood A (2014) A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. Knee Surg Sports Traumatol Arthrosc 23:3186–3195CrossRefPubMed Caterine S, Litchfield R, Johnson M, Chronik B, Getgood A (2014) A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. Knee Surg Sports Traumatol Arthrosc 23:3186–3195CrossRefPubMed
2.
go back to reference Fujita K, Kabata T, Maeda T, Kajino Y, Iwai S, Kuroda K, Hasegawa K, Tsuchiya H (2014) The use of the transverse acetabular ligament in total hip replacement: an analysis of the orientation of the trial acetabular component using a navigation system. Bone Joint J 96 B:306–311CrossRefPubMed Fujita K, Kabata T, Maeda T, Kajino Y, Iwai S, Kuroda K, Hasegawa K, Tsuchiya H (2014) The use of the transverse acetabular ligament in total hip replacement: an analysis of the orientation of the trial acetabular component using a navigation system. Bone Joint J 96 B:306–311CrossRefPubMed
3.
go back to reference Guenther D, Griffith C, Lesniak B, Lopomo N, Grassi A, Zaffagnini S, Fu FH, Musahl V (2015) Anterolateral rotatory instability of the knee. Knee Surg Sports Traumatol Arthrosc 23:2909–2917CrossRefPubMed Guenther D, Griffith C, Lesniak B, Lopomo N, Grassi A, Zaffagnini S, Fu FH, Musahl V (2015) Anterolateral rotatory instability of the knee. Knee Surg Sports Traumatol Arthrosc 23:2909–2917CrossRefPubMed
4.
go back to reference Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis A a (2015) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med 44:345–354CrossRefPubMed Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis A a (2015) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med 44:345–354CrossRefPubMed
5.
go back to reference Pomajzl R, Maerz T, Shams C, Guettler J, Bicos J (2014) A review of the anterolateral ligament of the knee: current knowledge regarding Its incidence, anatomy, biomechanics, and surgical dissection. Arthroscopy 31:583–591CrossRefPubMed Pomajzl R, Maerz T, Shams C, Guettler J, Bicos J (2014) A review of the anterolateral ligament of the knee: current knowledge regarding Its incidence, anatomy, biomechanics, and surgical dissection. Arthroscopy 31:583–591CrossRefPubMed
6.
go back to reference Zens M, Niemeyer P, Ruhhammer J, Bernstein A, Woias P, Mayr HO, Sudkamp NP, Feucht MJ (2015) Length changes of the anterolateral ligament during passive knee motion: a human cadaveric study. Am J Sports Med 43:2545–2552CrossRefPubMed Zens M, Niemeyer P, Ruhhammer J, Bernstein A, Woias P, Mayr HO, Sudkamp NP, Feucht MJ (2015) Length changes of the anterolateral ligament during passive knee motion: a human cadaveric study. Am J Sports Med 43:2545–2552CrossRefPubMed
7.
go back to reference Spencer L, Burkhart TA, Tran MN, Rezansoff AJ, Deo S, Caterine S, Getgood AM (2015) Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. Am J Sports Med 43:2189–2197CrossRefPubMed Spencer L, Burkhart TA, Tran MN, Rezansoff AJ, Deo S, Caterine S, Getgood AM (2015) Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. Am J Sports Med 43:2189–2197CrossRefPubMed
8.
go back to reference Tavlo M, Eljaja S, Jensen JT, Siersma VD, Krogsgaard MR (2016) The role of the anterolateral ligament in ACL insufficient and reconstructed knees on rotatory stability: a biomechanical study on human cadavers. Scand J Med Sci Sport 26:960–966CrossRef Tavlo M, Eljaja S, Jensen JT, Siersma VD, Krogsgaard MR (2016) The role of the anterolateral ligament in ACL insufficient and reconstructed knees on rotatory stability: a biomechanical study on human cadavers. Scand J Med Sci Sport 26:960–966CrossRef
9.
go back to reference Bojan AJ, Bragdon C, Jönsson A, Ekholm C, Kärrholm J (2015) Three-dimensional bone-implant movements in trochanteric hip fractures: precision and accuracy of radiostereometric analysis in a phantom model. J Ortho Res 33:705–711CrossRef Bojan AJ, Bragdon C, Jönsson A, Ekholm C, Kärrholm J (2015) Three-dimensional bone-implant movements in trochanteric hip fractures: precision and accuracy of radiostereometric analysis in a phantom model. J Ortho Res 33:705–711CrossRef
10.
go back to reference Kärrholm J (1989) Roentgen stereophotogrammetry. Review of orthopedic applications. Acta Orthop Scand 60:491–503CrossRefPubMed Kärrholm J (1989) Roentgen stereophotogrammetry. Review of orthopedic applications. Acta Orthop Scand 60:491–503CrossRefPubMed
11.
go back to reference Selvik G (1989) Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system. Acta Orthop Scand Suppl 232:1–51CrossRefPubMed Selvik G (1989) Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system. Acta Orthop Scand Suppl 232:1–51CrossRefPubMed
12.
go back to reference Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31:10–16CrossRefPubMed Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31:10–16CrossRefPubMed
13.
go back to reference Stentz-Olesen K, Toft E, De Raedt S, Jørgensen PB, Sørensen OG, Kaptein BL, Søballe K, Stilling M (2017) Validation of static and dynamic radiostereometric analysis of the knee joint using bone-models from CT data. Bone Joint Res doi:10.1302/2046-3758 Stentz-Olesen K, Toft E, De Raedt S, Jørgensen PB, Sørensen OG, Kaptein BL, Søballe K, Stilling M (2017) Validation of static and dynamic radiostereometric analysis of the knee joint using bone-models from CT data. Bone Joint Res doi:10.​1302/​2046-3758
15.
go back to reference Krčah M, Székely G, Blanc R (2011) Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. Proc Int Symp Biomed Imaging 2087–2090 Krčah M, Székely G, Blanc R (2011) Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. Proc Int Symp Biomed Imaging 2087–2090
16.
go back to reference De Raedt S, Mechlenburg I, Stilling M, Rømer L, Søballe K, de Bruijne M (2013) Automated measurement of diagnostic angles for hip dysplasia. SPIE Med Imaging Int Soc Opt Photonics 8670:8670091–8670099 De Raedt S, Mechlenburg I, Stilling M, Rømer L, Søballe K, de Bruijne M (2013) Automated measurement of diagnostic angles for hip dysplasia. SPIE Med Imaging Int Soc Opt Photonics 8670:8670091–8670099
17.
go back to reference Miranda DL, Rainbow MJ, Leventhal EL, Crisco JJ, Fleming BC (2010) Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J Biomech 43:1623–1626CrossRefPubMedPubMedCentral Miranda DL, Rainbow MJ, Leventhal EL, Crisco JJ, Fleming BC (2010) Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J Biomech 43:1623–1626CrossRefPubMedPubMedCentral
18.
go back to reference Sonnery-Cottet B, Thaunat M, Freychet B, Pupim BHB, Murphy CG, Claes S (2015) Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med 43:1598–1605CrossRefPubMed Sonnery-Cottet B, Thaunat M, Freychet B, Pupim BHB, Murphy CG, Claes S (2015) Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med 43:1598–1605CrossRefPubMed
19.
go back to reference Kaptein BL, Valstar ER, Stoel BC, Rozing PM, Reiber JHC (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36:873–882CrossRefPubMed Kaptein BL, Valstar ER, Stoel BC, Rozing PM, Reiber JHC (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36:873–882CrossRefPubMed
20.
go back to reference Dodds AL, Halewood C, Gupte CM, Williams A, Amis AA (2014) The anterolateral ligament: anatomy, length changes and association with the segond fracture. Bone Joint J 96 B:325–331CrossRefPubMed Dodds AL, Halewood C, Gupte CM, Williams A, Amis AA (2014) The anterolateral ligament: anatomy, length changes and association with the segond fracture. Bone Joint J 96 B:325–331CrossRefPubMed
21.
go back to reference Parsons EM, Gee AO, Spiekerman C, Cavanagh PR (2015) The biomechanical function of the anterolateral ligament of the knee. Am J Sports Med 43:669–674CrossRefPubMedPubMedCentral Parsons EM, Gee AO, Spiekerman C, Cavanagh PR (2015) The biomechanical function of the anterolateral ligament of the knee. Am J Sports Med 43:669–674CrossRefPubMedPubMedCentral
Metadata
Title
Reconstructing the anterolateral ligament does not decrease rotational knee laxity in ACL-reconstructed knees
Authors
Kasper Stentz-Olesen
Emil Toft Nielsen
Sepp de Raedt
Peter Bo Jørgensen
Ole Gade Sørensen
Bart Kaptein
Kjeld Søballe
Maiken Stilling
Publication date
01-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 4/2017
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-017-4500-3

Other articles of this Issue 4/2017

Knee Surgery, Sports Traumatology, Arthroscopy 4/2017 Go to the issue