Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 12/2014

01-12-2014 | Knee

Geometric variable designs of cam/post mechanisms influence the kinematics of knee implants

Authors: Ali Fallahiarezoodar, Mohammed Rafiq Abdul Kadir, Mina Alizadeh, Sangeetha Vasudevaraj Naveen, T. Kamarul

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 12/2014

Login to get access

Abstract

Purpose

Reproducing the femoral rollback through specially designed mechanism in knee implants is required to achieve full knee function in total knee arthroplasty. Most contemporary implants use cam/post mechanism to replace the function of Posterior Cruciate Ligament. This study was aimed to determine the most appropriate cam and post designs to produce normal femoral rollback of the knee.

Methods

Three different cams (triangle, ellipse, and circle) and three different posts (straight, convex, concave) geometries were considered in this study and were analysed using kinematic analyses. Femoral rollback did not occur until reaching 50° of knee flexion. Beyond this angle, two of the nine combinations demonstrate poor knee flexion and were eliminated from the study.

Results

The combination of circle cam with concave post, straight post and convex post showed 15.6, 15.9 and 16.1 mm posterior translation of the femur, respectively. The use of ellipse cam with convex post and straight post demonstrated a 15.3 and 14.9 mm femoral rollback, whilst the combination of triangle cam with convex post and straight post showed 16.1 and 15.8 mm femoral rollback, respectively.

Conclusion

The present study demonstrates that the use of circle cam and convex post created the best femoral rollback effect which in turn produces the highest amount of knee flexion. The findings of the study suggest that if the design is applied for knee implants, superior knee flexion may be possible for future patients.

Level of evidence

IV.
Literature
1.
go back to reference Akasaki Y, Matsuda S, Shimoto T, Miura H, Higaki H, Iwamoto Y (2008) Contact stress analysis of the conforming post-cam mechanism in posterior-stabilized total knee arthroplasty. J Arthroplasty 23:736–743PubMedCrossRef Akasaki Y, Matsuda S, Shimoto T, Miura H, Higaki H, Iwamoto Y (2008) Contact stress analysis of the conforming post-cam mechanism in posterior-stabilized total knee arthroplasty. J Arthroplasty 23:736–743PubMedCrossRef
2.
go back to reference Argenson JN, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac JM (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38:277–284PubMedCrossRef Argenson JN, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac JM (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38:277–284PubMedCrossRef
3.
go back to reference Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138PubMedCrossRef Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138PubMedCrossRef
4.
go back to reference Bin SI, Nam TS (2007) Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery. Knee Surg Sports Traumatol Arthrosc 15:350–355PubMedCrossRef Bin SI, Nam TS (2007) Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery. Knee Surg Sports Traumatol Arthrosc 15:350–355PubMedCrossRef
5.
go back to reference de Jong RJ, Heesterbeek PJ, Wymenga AB (2010) A new measurement technique for the tibiofemoral contact point in normal knees and knees with TKR. Knee Surg Sports Traumatol Arthrosc 18:388–393PubMedCrossRef de Jong RJ, Heesterbeek PJ, Wymenga AB (2010) A new measurement technique for the tibiofemoral contact point in normal knees and knees with TKR. Knee Surg Sports Traumatol Arthrosc 18:388–393PubMedCrossRef
6.
go back to reference Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57PubMedCrossRef Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57PubMedCrossRef
7.
go back to reference Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res 410:114–130PubMedCrossRef Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res 410:114–130PubMedCrossRef
8.
go back to reference Emodi GJ, Callaghan JJ, Pedersen DR, Brown TD (1999) Posterior cruciate ligament function following total knee arthroplasty: the effect of joint line elevation. Iowa Orthop J 19:82–92PubMedCentralPubMed Emodi GJ, Callaghan JJ, Pedersen DR, Brown TD (1999) Posterior cruciate ligament function following total knee arthroplasty: the effect of joint line elevation. Iowa Orthop J 19:82–92PubMedCentralPubMed
9.
go back to reference Godest AC, de Cloke CS, Taylor M, Gregson PJ, Keane AJ, Sathasivan S et al (2003) A computational model for the prediction of total knee replacement kinematics in the sagittal plane. J Biomech 33:435–442CrossRef Godest AC, de Cloke CS, Taylor M, Gregson PJ, Keane AJ, Sathasivan S et al (2003) A computational model for the prediction of total knee replacement kinematics in the sagittal plane. J Biomech 33:435–442CrossRef
10.
go back to reference Hartford JM, Banit D, Hall K, Kaufer H (2001) Radiographic analysis of low contact stress meniscal bearing total knee replacements. J Bone Joint Surg Am 83-A:229–234PubMed Hartford JM, Banit D, Hall K, Kaufer H (2001) Radiographic analysis of low contact stress meniscal bearing total knee replacements. J Bone Joint Surg Am 83-A:229–234PubMed
11.
go back to reference Hefzy MS, Kelly BP, Cooke TD (1998) Kinematics of the knee joint in deep flexion: a radiographic assessment. Med Eng Phys 20:302–307PubMedCrossRef Hefzy MS, Kelly BP, Cooke TD (1998) Kinematics of the knee joint in deep flexion: a radiographic assessment. Med Eng Phys 20:302–307PubMedCrossRef
12.
go back to reference Kim YH, Sohn KS, Kim JS (2005) Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 87:1470–1475PubMedCrossRef Kim YH, Sohn KS, Kim JS (2005) Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 87:1470–1475PubMedCrossRef
13.
go back to reference Li G, Most E, Sultan PG, Schule S, Zayontz S, Park SE et al (2004) Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Joint Surg Am 86-A:1721–1729PubMed Li G, Most E, Sultan PG, Schule S, Zayontz S, Park SE et al (2004) Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Joint Surg Am 86-A:1721–1729PubMed
14.
go back to reference Limbert G, Middleton J (2006) A constitutive model of the posterior cruciate ligament. Med Eng Phys 28:99–113PubMedCrossRef Limbert G, Middleton J (2006) A constitutive model of the posterior cruciate ligament. Med Eng Phys 28:99–113PubMedCrossRef
15.
go back to reference Lin KL, Huang CH, Liu YL, Chen WC, Chang TW, Yang CT et al (2011) Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech 26:847–852CrossRef Lin KL, Huang CH, Liu YL, Chen WC, Chang TW, Yang CT et al (2011) Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech 26:847–852CrossRef
16.
17.
go back to reference Lu TW, Tsai TY, Kuo MY, Hsu HC, Chen HL (2008) In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med Eng Phys 30:1004–1012PubMedCrossRef Lu TW, Tsai TY, Kuo MY, Hsu HC, Chen HL (2008) In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med Eng Phys 30:1004–1012PubMedCrossRef
18.
go back to reference Maruyama S, Yoshiya S, Matsui N, Kuroda R, Kurosaka M (2004) Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplasty 19:349–353PubMedCrossRef Maruyama S, Yoshiya S, Matsui N, Kuroda R, Kurosaka M (2004) Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplasty 19:349–353PubMedCrossRef
19.
go back to reference Most E, Li G, Sultan PG, Park SE, Rubash HE (2005) Kinematic analysis of conventional and high-flexion cruciate-retaining total knee arthroplasties: an in vitro investigation. J Arthroplasty 20:529–535PubMedCrossRef Most E, Li G, Sultan PG, Park SE, Rubash HE (2005) Kinematic analysis of conventional and high-flexion cruciate-retaining total knee arthroplasties: an in vitro investigation. J Arthroplasty 20:529–535PubMedCrossRef
20.
go back to reference Nakagawa S, Johal P, Pinskerova V, Komatsu T, Sosna A, Williams A et al (2004) The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 86:450–456PubMedCrossRef Nakagawa S, Johal P, Pinskerova V, Komatsu T, Sosna A, Williams A et al (2004) The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 86:450–456PubMedCrossRef
21.
go back to reference Padua R, Ceccarelli E, Bondi R, Campi A, Padua L (2007) Range of motion correlates with patient perception of TKA outcome. Clin Orthop Relat Res 460:174–177PubMed Padua R, Ceccarelli E, Bondi R, Campi A, Padua L (2007) Range of motion correlates with patient perception of TKA outcome. Clin Orthop Relat Res 460:174–177PubMed
22.
go back to reference Pandit H, van Duren BH, Price M, Tilley S, Gill HS, Thomas NP, Murray DW (2013) Constraints in posterior-stabilised TKA kinematics: a comparison of two generations of an implant. Knee Surg Sports Traumatol Arthrosc 21(12):2800–2809PubMedCrossRef Pandit H, van Duren BH, Price M, Tilley S, Gill HS, Thomas NP, Murray DW (2013) Constraints in posterior-stabilised TKA kinematics: a comparison of two generations of an implant. Knee Surg Sports Traumatol Arthrosc 21(12):2800–2809PubMedCrossRef
23.
go back to reference Pereira GC, Walsh M, Wasserman B, Banks S, Jaffe WL, Di Cesare PE (2008) Kinematics of the stiff total knee arthroplasty. J Arthroplasty 23:894–901PubMedCrossRef Pereira GC, Walsh M, Wasserman B, Banks S, Jaffe WL, Di Cesare PE (2008) Kinematics of the stiff total knee arthroplasty. J Arthroplasty 23:894–901PubMedCrossRef
24.
25.
go back to reference Ranawat CS (2003) Design may be counterproductive for optimizing flexion after TKR. Clin Orthop Relat Res 416:174–176PubMedCrossRef Ranawat CS (2003) Design may be counterproductive for optimizing flexion after TKR. Clin Orthop Relat Res 416:174–176PubMedCrossRef
26.
go back to reference Robertsson O, Dunbar MJ (2001) Patient satisfaction compared with general health and disease-specific questionnaires in knee arthroplasty patients. J Arthroplasty 16:476–482PubMedCrossRef Robertsson O, Dunbar MJ (2001) Patient satisfaction compared with general health and disease-specific questionnaires in knee arthroplasty patients. J Arthroplasty 16:476–482PubMedCrossRef
27.
go back to reference Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24:972–978PubMedCrossRef Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24:972–978PubMedCrossRef
28.
go back to reference van Duren BH, Pandit H, Beard DJ, Zavatsky AB, Gallagher JA, Thomas NP et al (2007) How effective are added constraints in improving TKR kinematics? J Biomech 40(1):S31–S37PubMedCrossRef van Duren BH, Pandit H, Beard DJ, Zavatsky AB, Gallagher JA, Thomas NP et al (2007) How effective are added constraints in improving TKR kinematics? J Biomech 40(1):S31–S37PubMedCrossRef
29.
go back to reference Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S et al (1997) A knee simulating machine for performance evaluation of total knee replacements. J Biomech 30:83–89PubMedCrossRef Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S et al (1997) A knee simulating machine for performance evaluation of total knee replacements. J Biomech 30:83–89PubMedCrossRef
30.
go back to reference Walker PS, Sussman-Fort JM, Yildirim G, Boyer J (2009) Design features of total knees for achieving normal knee motion characteristics. J Arthroplasty 24:475–483PubMedCrossRef Walker PS, Sussman-Fort JM, Yildirim G, Boyer J (2009) Design features of total knees for achieving normal knee motion characteristics. J Arthroplasty 24:475–483PubMedCrossRef
31.
go back to reference Weiss JM, Noble PC, Conditt MA, Kohl HW, Roberts S, Cook KF et al (2002) What functional activities are important to patients with knee replacements? Clin Orthop Relat Res 404:172–188PubMedCrossRef Weiss JM, Noble PC, Conditt MA, Kohl HW, Roberts S, Cook KF et al (2002) What functional activities are important to patients with knee replacements? Clin Orthop Relat Res 404:172–188PubMedCrossRef
32.
go back to reference Wilson DR, Feikes JD, O’Connor JJ (1998) Ligaments and articular contact guide passive knee flexion. J Biomech 31:1127–1136PubMedCrossRef Wilson DR, Feikes JD, O’Connor JJ (1998) Ligaments and articular contact guide passive knee flexion. J Biomech 31:1127–1136PubMedCrossRef
33.
go back to reference Yu CH, Walker PS, Dewar ME (2001) The effect of design variables of condylar total knees on the joint forces in step climbing based on a computer model. J Biomech 34:1011–1021PubMedCrossRef Yu CH, Walker PS, Dewar ME (2001) The effect of design variables of condylar total knees on the joint forces in step climbing based on a computer model. J Biomech 34:1011–1021PubMedCrossRef
34.
go back to reference Zelle J, Heesterbeek PJ, De Waal Malefijt M, Verdonschot N (2010) Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys 32:700–707PubMedCrossRef Zelle J, Heesterbeek PJ, De Waal Malefijt M, Verdonschot N (2010) Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys 32:700–707PubMedCrossRef
35.
go back to reference Zelle J, Van der Zanden AC, De Waal Malefijt M, Verdonschot N (2009) Biomechanical analysis of posterior cruciate ligament retaining high-flexion total knee arthroplasty. Clin Biomech 24:842–849CrossRef Zelle J, Van der Zanden AC, De Waal Malefijt M, Verdonschot N (2009) Biomechanical analysis of posterior cruciate ligament retaining high-flexion total knee arthroplasty. Clin Biomech 24:842–849CrossRef
36.
go back to reference Zingde SM, Leszko F, Sharma A, Mahfouz MR, Komistek RD, Dennis DA (2014) In vivo determination of cam-post engagement in fixed and mobile-bearing TKA. Clin Orthop Relat Res 472(1):254–262PubMedCrossRef Zingde SM, Leszko F, Sharma A, Mahfouz MR, Komistek RD, Dennis DA (2014) In vivo determination of cam-post engagement in fixed and mobile-bearing TKA. Clin Orthop Relat Res 472(1):254–262PubMedCrossRef
Metadata
Title
Geometric variable designs of cam/post mechanisms influence the kinematics of knee implants
Authors
Ali Fallahiarezoodar
Mohammed Rafiq Abdul Kadir
Mina Alizadeh
Sangeetha Vasudevaraj Naveen
T. Kamarul
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 12/2014
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-014-3227-7

Other articles of this Issue 12/2014

Knee Surgery, Sports Traumatology, Arthroscopy 12/2014 Go to the issue