Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 6/2014

01-06-2014 | Ankle

Autologous collagen-induced chondrogenesis technique (ACIC) for the treatment of chondral lesions of the talus

Authors: P. Volpi, C. Bait, A. Quaglia, A. Redaelli, E. Prospero, M. Cervellin, D. Stanco, L. de Girolamo

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 6/2014

Login to get access

Abstract

Purpose

Autologous collagen-induced chondrogenesis technique (ACIC) combines microfractures with the use of an injectable atelocollagen matrix that allows performing the whole cartilage repair treatment arthroscopically. The aim of this study was to evaluate the in vitro cytocompatibility of this biomaterial using human bone marrow mesenchymal stem cells and human chondrocytes. Moreover, the preliminary data of five patients affected by chondral lesion of the talus treated with the ACIC technique are shown.

Methods

Human bone marrow mesenchymal stem cells and human chondrocytes were seeded on solid and pre-solid atelocollagen scaffolds. Cell–scaffold constructs were cultured for 7 days and then prepared for histological analyses. Arthroscopic ACIC was performed in five patients affected by chondral lesions of the talus; they were clinically evaluated with AOFAS, VAS and Tegner score before and then after 6 months from surgery.

Results

In vitro results showed that both bone marrow mesenchymal stem cells and chondrocytes were able to efficiently colonize the whole construct, from the surface to the core, only when seeded on the pre-solid atelocollagen scaffold, but not on its solid form. No adverse events were observed in the patients treated with the ACIC technique; a significant improvement in VAS pain scale and in AOFAS score was found at 6 months follow up.

Conclusion

Injectable atelocollagen can be considered a feasible scaffold for cartilage repair treatment, in particular if used in its pre-solid form. ACIC leads to good clinical results in the treatment for chondral lesions of the talus even if longer follow-up and a higher number of patients are necessary to confirm these data.

Level of evidence

IV.
Literature
1.
go back to reference Barnes CJ, Ferkel RD (2003) Arthroscopic debridement and drilling of osteochondral lesion of the talus. Foot Ankle Clin 8:243–257PubMedCrossRef Barnes CJ, Ferkel RD (2003) Arthroscopic debridement and drilling of osteochondral lesion of the talus. Foot Ankle Clin 8:243–257PubMedCrossRef
2.
go back to reference Becher C, Becher C, Driessen A, Hess T, Longo UG, Maffulli N, Thermann H (2010) Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up. Knee Surg Sports Traumatol Arthrosc 18:656–663PubMedCrossRef Becher C, Becher C, Driessen A, Hess T, Longo UG, Maffulli N, Thermann H (2010) Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up. Knee Surg Sports Traumatol Arthrosc 18:656–663PubMedCrossRef
3.
go back to reference Carlsson AM (1983) Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 16:87–101PubMedCrossRef Carlsson AM (1983) Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 16:87–101PubMedCrossRef
4.
go back to reference Chen CY, Huang PJ, Kao KF, Chen JC, Cheng YM, Chiang HC, Lin CY (2004) Surgical reconstruction for chronic lateral instability of the ankle. Injury 35:809–813PubMedCrossRef Chen CY, Huang PJ, Kao KF, Chen JC, Cheng YM, Chiang HC, Lin CY (2004) Surgical reconstruction for chronic lateral instability of the ankle. Injury 35:809–813PubMedCrossRef
5.
go back to reference de Girolamo L, Bertolini G, Cervellin M, Sozzi G, Volpi P (2010) Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury 41:1172–1177PubMedCrossRef de Girolamo L, Bertolini G, Cervellin M, Sozzi G, Volpi P (2010) Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury 41:1172–1177PubMedCrossRef
6.
go back to reference Dhollander AA, De Neve F, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC (2011) Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc 19:536–542PubMedCrossRef Dhollander AA, De Neve F, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC (2011) Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc 19:536–542PubMedCrossRef
7.
go back to reference Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, Goodnight JL, McIlwraith CW (2003) Early events in cartilage repair after subchondral bone microfractures. Clin Orthop Relat Res 407:215–227PubMedCrossRef Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, Goodnight JL, McIlwraith CW (2003) Early events in cartilage repair after subchondral bone microfractures. Clin Orthop Relat Res 407:215–227PubMedCrossRef
8.
go back to reference Giannini S, Buda R, Vannini F (2001) Autologous chondrocyte transplantation in osteochondral lesion of the ankle joint. Foot Ankle Int 22:513–517PubMed Giannini S, Buda R, Vannini F (2001) Autologous chondrocyte transplantation in osteochondral lesion of the ankle joint. Foot Ankle Int 22:513–517PubMed
9.
go back to reference Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18:1456–1464PubMedCrossRef Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18:1456–1464PubMedCrossRef
10.
go back to reference Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G (2006) Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture and osteochondral autograft transplantation. Arthroscopy 22:1085–1092PubMedCrossRef Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G (2006) Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture and osteochondral autograft transplantation. Arthroscopy 22:1085–1092PubMedCrossRef
11.
go back to reference Gyton GP (2001) Theoretical limitations of AOFAS scoring system: an analysis using Monte Carlo modeling. Foot Ankle Int 22:779–787 Gyton GP (2001) Theoretical limitations of AOFAS scoring system: an analysis using Monte Carlo modeling. Foot Ankle Int 22:779–787
12.
go back to reference Hjelle K, Soljeim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18:730–734PubMedCrossRef Hjelle K, Soljeim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18:730–734PubMedCrossRef
13.
go back to reference Hui JHP, Buhary KS, Chowdhary A (2012) Implantation of orthobiologic, biodegradable scaffolds in osteochondral repair. Orthop Clin North Am 43:255–261PubMedCrossRef Hui JHP, Buhary KS, Chowdhary A (2012) Implantation of orthobiologic, biodegradable scaffolds in osteochondral repair. Orthop Clin North Am 43:255–261PubMedCrossRef
14.
go back to reference Imhoff AB, Paul J, Ottinger B, Wörtler K, Lämmle L, Spang J, Hinterwimmer S (2011) Osteochondral transplantation of the talus: long term clinical and magnetic resonance imaging evaluation. Am J Sports Med 39:1487–1493PubMedCrossRef Imhoff AB, Paul J, Ottinger B, Wörtler K, Lämmle L, Spang J, Hinterwimmer S (2011) Osteochondral transplantation of the talus: long term clinical and magnetic resonance imaging evaluation. Am J Sports Med 39:1487–1493PubMedCrossRef
15.
go back to reference Kitaoka HB, Patzer GL (1997) Analysis of clinical grading scales for the foot and ankle. Foot Ankle Int 18:443–446PubMedCrossRef Kitaoka HB, Patzer GL (1997) Analysis of clinical grading scales for the foot and ankle. Foot Ankle Int 18:443–446PubMedCrossRef
16.
go back to reference Lopa S, Mercuri D, Colombini A, De Conti G, Segatti F, Zagra L, Moretti M (2013) Orthopedic bioactive implants: hydrogel enrichment of macroporous titanium for the delivery of mesenchymal stem cells and strontium. J Biomed Mater Res A 101:3396–3403PubMedCrossRef Lopa S, Mercuri D, Colombini A, De Conti G, Segatti F, Zagra L, Moretti M (2013) Orthopedic bioactive implants: hydrogel enrichment of macroporous titanium for the delivery of mesenchymal stem cells and strontium. J Biomed Mater Res A 101:3396–3403PubMedCrossRef
17.
go back to reference Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a ascoring scale. Am J Sport Med 10:150–154CrossRef Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a ascoring scale. Am J Sport Med 10:150–154CrossRef
18.
go back to reference Madeley NJ, Wing KJ, Topliss C, Penner MJ, Glazebrook MA, Younger AS (2012) Responsiveness and validity of the SF-36, Ankle Osteoarthritis Scale, AOFAS Ankle Hindfoot Score, and Foot Function Index in end stage ankle arthritis. Foot Ankle Int 33:57–63PubMedCrossRef Madeley NJ, Wing KJ, Topliss C, Penner MJ, Glazebrook MA, Younger AS (2012) Responsiveness and validity of the SF-36, Ankle Osteoarthritis Scale, AOFAS Ankle Hindfoot Score, and Foot Function Index in end stage ankle arthritis. Foot Ankle Int 33:57–63PubMedCrossRef
19.
go back to reference Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M (2012) Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med 40:534–541PubMedCrossRef Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M (2012) Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med 40:534–541PubMedCrossRef
20.
go back to reference Pelttari K, Steck E, Richter W (2008) The use of mesenchymal stem cells for chondrogenesis. Injury 39:S58–S65PubMedCrossRef Pelttari K, Steck E, Richter W (2008) The use of mesenchymal stem cells for chondrogenesis. Injury 39:S58–S65PubMedCrossRef
21.
22.
go back to reference Ronga M, Grassi FA (2005) Treatment of deep cartilage defects of the ankle with matrix-induced autologous chondrocyte implantation (MACI). Foot Ankle Surg 11:29–33CrossRef Ronga M, Grassi FA (2005) Treatment of deep cartilage defects of the ankle with matrix-induced autologous chondrocyte implantation (MACI). Foot Ankle Surg 11:29–33CrossRef
24.
26.
go back to reference Shetty AA, Kim SJ, Bilagi P, Stelzeneder D (2013) Autologous collagen-induced chondrogenesis: single-stage arthroscopic cartilage repair technique. Orthopedics 36:e648–e652PubMedCrossRef Shetty AA, Kim SJ, Bilagi P, Stelzeneder D (2013) Autologous collagen-induced chondrogenesis: single-stage arthroscopic cartilage repair technique. Orthopedics 36:e648–e652PubMedCrossRef
27.
go back to reference Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391:S362–S369PubMedCrossRef Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391:S362–S369PubMedCrossRef
28.
go back to reference Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation techniques. Injury Suppl 1:S26–S31CrossRef Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation techniques. Injury Suppl 1:S26–S31CrossRef
29.
go back to reference Tegner Y, Lisholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49PubMed Tegner Y, Lisholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49PubMed
30.
go back to reference Valderrabano V, Miska M, Leumann A, Wiewiorski M (2013) Reconstruction of osteochondral lesion of the talus with autologous spongiosa graft and autologous matrix-induced chondogenesis. Am J Sports Med 41:519–527PubMedCrossRef Valderrabano V, Miska M, Leumann A, Wiewiorski M (2013) Reconstruction of osteochondral lesion of the talus with autologous spongiosa graft and autologous matrix-induced chondogenesis. Am J Sports Med 41:519–527PubMedCrossRef
31.
go back to reference van Eekeren IC, Reilingh ML, van Dijk CN (2012) Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. Sports Med 42:857–870PubMedCrossRef van Eekeren IC, Reilingh ML, van Dijk CN (2012) Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. Sports Med 42:857–870PubMedCrossRef
32.
go back to reference Verhagen RA, Struijs PA, Bossuyt PM, van Dijk NC (2003) Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 8:233–242PubMedCrossRef Verhagen RA, Struijs PA, Bossuyt PM, van Dijk NC (2003) Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 8:233–242PubMedCrossRef
33.
go back to reference Wiewiorski M, Leumann A, Buettner O, Pagenstert G, Horisberger M, Valderrabano V (2011) Autologous matrix-induced chondrogenesis aided reconstruction of a large focal osteochondral lesion of the talus. Arch Orthop Trauma Surg 131:293–296PubMedCrossRef Wiewiorski M, Leumann A, Buettner O, Pagenstert G, Horisberger M, Valderrabano V (2011) Autologous matrix-induced chondrogenesis aided reconstruction of a large focal osteochondral lesion of the talus. Arch Orthop Trauma Surg 131:293–296PubMedCrossRef
34.
go back to reference Wiewiorski M, Barg A, Valderrabano V (2013) Autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Foot Ankle Clin 118:151–158CrossRef Wiewiorski M, Barg A, Valderrabano V (2013) Autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Foot Ankle Clin 118:151–158CrossRef
35.
go back to reference Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18:238–246PubMedCentralPubMedCrossRef Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18:238–246PubMedCentralPubMedCrossRef
Metadata
Title
Autologous collagen-induced chondrogenesis technique (ACIC) for the treatment of chondral lesions of the talus
Authors
P. Volpi
C. Bait
A. Quaglia
A. Redaelli
E. Prospero
M. Cervellin
D. Stanco
L. de Girolamo
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 6/2014
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-013-2830-3

Other articles of this Issue 6/2014

Knee Surgery, Sports Traumatology, Arthroscopy 6/2014 Go to the issue