Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 8/2013

01-08-2013 | Experimental Study

Stress distribution inside bone after suture anchor insertion: simulation using a three-dimensional finite element method

Authors: Hirotaka Sano, Atsushi Takahashi, Daisuke Chiba, Taku Hatta, Nobuyuki Yamamoto, Eiji Itoi

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 8/2013

Login to get access

Abstract

Purpose

To define stress distribution patterns inside a bone around suture anchors inserted at different angles using a three-dimensional finite element (FE) method.

Methods

An isotropic cube model (Young’s modulus, 1,380 MPa; Poisson’s ratio, 0.3) was designed on a computer to standardize analysis conditions. A virtual Twinfix anchor was inserted into the cube at two different angles (45° and 90°) against the top surface. A traction force (100 N) was applied to the anchor at six different angles (15°, 30°, 45°, 60°, 75° and 90°) against the top surface. Elastic analysis was performed, and the distribution of the von Mises equivalent stress inside the cube was calculated. The highest value of the equivalent stress at each traction angle was compared between the 45° and 90° anchor insertion settings.

Results

Stress concentration was most evident around proximal anchor threads, particularly on the traction side. Interestingly, stress gradually declined with an increase in traction angle only for the 90° insertion setting. At 15° and 90° traction angles, the equivalent stress was lower for the 45° insertion setting than for the 90° insertion setting. In contrast, the 90° insertion setting exhibited lower equivalent stress than the 45° insertion setting at 30°, 45° and 60° traction angles.

Conclusions

Insertion of an anchor at 90° might reduce the stress concentration around the proximal anchor threads on the traction side and provide lower equivalent stress in the middle range of traction angles (30°–60°) than insertion at 45°. This could avoid early postoperative anchor failure.
Literature
1.
go back to reference Barber FA, Herbert MA, Coons DA, Boothby MH (2006) Sutures and suture anchors—update 2006. Arthroscopy 22:1063–1069PubMedCrossRef Barber FA, Herbert MA, Coons DA, Boothby MH (2006) Sutures and suture anchors—update 2006. Arthroscopy 22:1063–1069PubMedCrossRef
2.
go back to reference Barber FA, Herbert MA, Beavis RC, Oro FB (2008) Sutures anchor materials, eyelets, and designs: update 2008. Arthroscopy 24:859–867PubMedCrossRef Barber FA, Herbert MA, Beavis RC, Oro FB (2008) Sutures anchor materials, eyelets, and designs: update 2008. Arthroscopy 24:859–867PubMedCrossRef
3.
go back to reference Benson EC, MacDermid JC, Drosdowech DS, Athwal GS (2010) The incidence of early metallic suture anchor pullout after arthroscopic rotator cuff repair. Arthroscopy 26:310–315PubMedCrossRef Benson EC, MacDermid JC, Drosdowech DS, Athwal GS (2010) The incidence of early metallic suture anchor pullout after arthroscopic rotator cuff repair. Arthroscopy 26:310–315PubMedCrossRef
4.
go back to reference Bessho M, Ohnishi I, Okazaki H, Sato W, Kominami H, Matsunaga S, Nakamura K (2004) Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture. J Orthop Sci 9:545–550PubMedCrossRef Bessho M, Ohnishi I, Okazaki H, Sato W, Kominami H, Matsunaga S, Nakamura K (2004) Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture. J Orthop Sci 9:545–550PubMedCrossRef
5.
go back to reference Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753PubMedCrossRef Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753PubMedCrossRef
6.
go back to reference Bhatia DN, de Beer JF, van Rooyen KS (2007) The bony partial articular surface tendon avulsion lesion: an arthroscopic technique for fixation of the partially avulsed greater tuberosity fracture. Arthroscopy 23:786.e1–786.e6CrossRef Bhatia DN, de Beer JF, van Rooyen KS (2007) The bony partial articular surface tendon avulsion lesion: an arthroscopic technique for fixation of the partially avulsed greater tuberosity fracture. Arthroscopy 23:786.e1–786.e6CrossRef
7.
go back to reference Burkhart SS (1995) The deadman theory of suture anchors: observations along a south Texas fence line. Arthroscopy 11:119–123PubMedCrossRef Burkhart SS (1995) The deadman theory of suture anchors: observations along a south Texas fence line. Arthroscopy 11:119–123PubMedCrossRef
8.
go back to reference Burkhart SS, Lo IKY (2006) Arthroscopic rotator cuff repair. J Am Acad Orthop Surg 14:333–346PubMed Burkhart SS, Lo IKY (2006) Arthroscopic rotator cuff repair. J Am Acad Orthop Surg 14:333–346PubMed
9.
go back to reference Dalstra M, Huiskes R, van Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng 117:272–278PubMedCrossRef Dalstra M, Huiskes R, van Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng 117:272–278PubMedCrossRef
10.
11.
go back to reference Kirchhoff C, Braunstein V, Milz S, Sprecher CM, Fischer F, Tami A, Ahrens P, Imhoff AB, Hinterwimmer S (2010) Assessment of bone quality within the tuberosities of the osteoporotic humeral head: relevance for anchor positioning in rotator cuff repair. Am J Sports Med 38:564–569PubMedCrossRef Kirchhoff C, Braunstein V, Milz S, Sprecher CM, Fischer F, Tami A, Ahrens P, Imhoff AB, Hinterwimmer S (2010) Assessment of bone quality within the tuberosities of the osteoporotic humeral head: relevance for anchor positioning in rotator cuff repair. Am J Sports Med 38:564–569PubMedCrossRef
12.
go back to reference Liporace FA, Bono CM, Caruso SA, Weiner B, Penny K, Feldman AJ, Grossman MG, Haher TR (2002) The mechanical effects of suture anchor insertion angle for rotator cuff repair. Orthopedics 25:399–402PubMed Liporace FA, Bono CM, Caruso SA, Weiner B, Penny K, Feldman AJ, Grossman MG, Haher TR (2002) The mechanical effects of suture anchor insertion angle for rotator cuff repair. Orthopedics 25:399–402PubMed
13.
go back to reference Mahar AT, Tucker BST, Upasani VV, Oka RS, Pedowitz RA (2005) Increasing the insertion depth of suture anchors for rotator cuff repair does not improve biomechanical stability. J Shoulder Elbow Surg 14:626–630PubMedCrossRef Mahar AT, Tucker BST, Upasani VV, Oka RS, Pedowitz RA (2005) Increasing the insertion depth of suture anchors for rotator cuff repair does not improve biomechanical stability. J Shoulder Elbow Surg 14:626–630PubMedCrossRef
14.
go back to reference Meyer DC, Fucentese SF, Koller B, Gerber C (2004) Association of osteopenia of the humeral head with full-thickness rotator cuff tears. J Should Elbow Surg 13:333–337CrossRef Meyer DC, Fucentese SF, Koller B, Gerber C (2004) Association of osteopenia of the humeral head with full-thickness rotator cuff tears. J Should Elbow Surg 13:333–337CrossRef
15.
go back to reference Park HB, Keyurapan E, Gill HS, Selhi HS, McFarland EG (2006) Suture anchors and tacks for shoulder surgery, part II: the prevention and treatment of complications. Am J Sports Med 34:136–144PubMedCrossRef Park HB, Keyurapan E, Gill HS, Selhi HS, McFarland EG (2006) Suture anchors and tacks for shoulder surgery, part II: the prevention and treatment of complications. Am J Sports Med 34:136–144PubMedCrossRef
16.
go back to reference Pietschmann MF, Fröhlich V, Ficklscherer A, Hausdorf J, Utzschneider S, Jansson V, Müller PE (2008) Pullout strength of suture anchors in comparison with transosseous sutures for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 16:504–510PubMedCrossRef Pietschmann MF, Fröhlich V, Ficklscherer A, Hausdorf J, Utzschneider S, Jansson V, Müller PE (2008) Pullout strength of suture anchors in comparison with transosseous sutures for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 16:504–510PubMedCrossRef
17.
go back to reference Pietschmann MF, Fröhlich V, Ficklscherer A, Gülecyüz MF, Wegener B, Volkmar Jansson V, Müller PE (2009) Suture anchor fixation strength in osteopenic versus non-osteopenic bone for rotator cuff repair. Arch Orthop Trauma Surg 129:373–379PubMedCrossRef Pietschmann MF, Fröhlich V, Ficklscherer A, Gülecyüz MF, Wegener B, Volkmar Jansson V, Müller PE (2009) Suture anchor fixation strength in osteopenic versus non-osteopenic bone for rotator cuff repair. Arch Orthop Trauma Surg 129:373–379PubMedCrossRef
18.
go back to reference Sakaguchi RL, Borgersen SE (1995) Nonlinear contact analysis of preload in dental implant screws. Int J Oral Maxillofac Implant 10:295–302 Sakaguchi RL, Borgersen SE (1995) Nonlinear contact analysis of preload in dental implant screws. Int J Oral Maxillofac Implant 10:295–302
19.
go back to reference Sano H, Yamashita T, Wakabayashi I, Itoi E (2007) Stress distribution in the supraspinatus tendon after the tendon repair: suture anchors versus transosseous suture fixation. Am J Sports Med 35:542–546PubMedCrossRef Sano H, Yamashita T, Wakabayashi I, Itoi E (2007) Stress distribution in the supraspinatus tendon after the tendon repair: suture anchors versus transosseous suture fixation. Am J Sports Med 35:542–546PubMedCrossRef
20.
go back to reference Scheibel MT, Habermeyer P (2003) A modified Mason–Allen technique for rotator cuff repair using suture anchors. Arthroscopy 19:330–333PubMedCrossRef Scheibel MT, Habermeyer P (2003) A modified Mason–Allen technique for rotator cuff repair using suture anchors. Arthroscopy 19:330–333PubMedCrossRef
21.
go back to reference Seki N, Itoi E, Shibuya Y, Wakabayashi I, Sano H, Sashi R, Minagawa H, Yamamoto N, Abe H, Kikuchi K, Okada K, Shimada Y (2008) Mechanical environment of the supraspinatus tendon: three-dimensional finite element model analysis. J Orthop Sci 13:348–353PubMedCrossRef Seki N, Itoi E, Shibuya Y, Wakabayashi I, Sano H, Sashi R, Minagawa H, Yamamoto N, Abe H, Kikuchi K, Okada K, Shimada Y (2008) Mechanical environment of the supraspinatus tendon: three-dimensional finite element model analysis. J Orthop Sci 13:348–353PubMedCrossRef
22.
go back to reference Spazzin AO, Abreu RT, Noritomi PY, Consani RL, Mesquita MF (2011) Evaluation of stress distribution in overdenture-retaining bar with different levels of vertical misfit. J Prosthodont 20:280–285PubMedCrossRef Spazzin AO, Abreu RT, Noritomi PY, Consani RL, Mesquita MF (2011) Evaluation of stress distribution in overdenture-retaining bar with different levels of vertical misfit. J Prosthodont 20:280–285PubMedCrossRef
23.
go back to reference Strauss E, Frank D, Kubiak E, Kummer F, Rokito A (2009) The effect of the angle of suture anchor insertion on fixation failure at the tendon-suture interface after rotator cuff repair: deadman’s angle revisited. Arthroscopy 25:597–602PubMedCrossRef Strauss E, Frank D, Kubiak E, Kummer F, Rokito A (2009) The effect of the angle of suture anchor insertion on fixation failure at the tendon-suture interface after rotator cuff repair: deadman’s angle revisited. Arthroscopy 25:597–602PubMedCrossRef
24.
go back to reference Tao SS, Kaltenbach J (2006) Arthroscopic placement of a modified Mason–Allen stitch. Arthroscopy 22:1248.e1–1248.e3CrossRef Tao SS, Kaltenbach J (2006) Arthroscopic placement of a modified Mason–Allen stitch. Arthroscopy 22:1248.e1–1248.e3CrossRef
25.
go back to reference Tingart MJ, Apreleva M, Zurakowski D, Warner JJ (2003) Pullout strength of suture anchors used in rotator cuff repair. J Bone Joint Surg Am 85:2190–2198PubMedCrossRef Tingart MJ, Apreleva M, Zurakowski D, Warner JJ (2003) Pullout strength of suture anchors used in rotator cuff repair. J Bone Joint Surg Am 85:2190–2198PubMedCrossRef
26.
go back to reference Tingart MJ, Apreleva M, Lehtinen J, Zurakowski D, Warner JJ (2004) Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: which anchors are best to use in patients with low bone quality? Am J Sports Med 32:1466–1473PubMedCrossRef Tingart MJ, Apreleva M, Lehtinen J, Zurakowski D, Warner JJ (2004) Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: which anchors are best to use in patients with low bone quality? Am J Sports Med 32:1466–1473PubMedCrossRef
27.
go back to reference Wakabayashi I, Itoi E, Sano H, Shibuya Y, Sashi R, Minagawa H, Kobayashi M (2003) Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. J Should Elbow Surg 12:612–617CrossRef Wakabayashi I, Itoi E, Sano H, Shibuya Y, Sashi R, Minagawa H, Kobayashi M (2003) Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. J Should Elbow Surg 12:612–617CrossRef
28.
go back to reference Yamada M, Briot J, Pedrono A, Sans N, Mansat P, Mansat M, Swider P (2007) Age- and gender-related distribution of bone tissue of osteoporotic humeral head using computed tomography. J Should Elbow Surg 16:596–602CrossRef Yamada M, Briot J, Pedrono A, Sans N, Mansat P, Mansat M, Swider P (2007) Age- and gender-related distribution of bone tissue of osteoporotic humeral head using computed tomography. J Should Elbow Surg 16:596–602CrossRef
Metadata
Title
Stress distribution inside bone after suture anchor insertion: simulation using a three-dimensional finite element method
Authors
Hirotaka Sano
Atsushi Takahashi
Daisuke Chiba
Taku Hatta
Nobuyuki Yamamoto
Eiji Itoi
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 8/2013
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-012-2060-0

Other articles of this Issue 8/2013

Knee Surgery, Sports Traumatology, Arthroscopy 8/2013 Go to the issue