Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 11/2011

01-11-2011 | Knee

Ultrasonic probe is useful for in vivo quantitative assessment of medial femoral condyle articular cartilage

Authors: Takashi Shimizu, Shigeyuki Wakitani, Yoshinari Tanaka, Yasukazu Yonetani, Yoshiki Shiozaki, Katsuji Shimizu, Shuji Horibe

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 11/2011

Login to get access

Abstract

Purpose

Although objective evaluation of articular cartilage is important for assessing the outcome of surgical treatment, no reliable method has yet been developed. It has recently been reported that quantitative ultrasound is applicable for assessment of living human cartilage. The purpose of this study was to investigate whether quantitative ultrasound is able to detect subtle changes in articular cartilage, as well as age-related changes in normal cartilage during arthroscopic surgery.

Methods

Thirty-six patients with knee injury underwent ultrasonic evaluation of the articular cartilage during arthroscopy. The reflex echogram from the cartilage was converted to a wavelet map using wavelet transformation. As a quantitative index on the wavelet map, the maximum magnitude was selected. Whether or not the cartilage was damaged was judged from the arthroscopic view of the articular surface. Both normal sites (33 sites) and damaged areas (Outerbridge grade I–II, 11 sites) were measured.

Results

The average maximum magnitude values for normal and damaged cartilage were 4.2 ± 1.6 and 1.4 ± 0.6, respectively. The maximum magnitude was significantly higher in intact, than in injured, cartilage (P < 0.01). The maximum magnitude for intact cartilage of the medial femoral condyle showed a significant correlation with patient age (r = −0.66, P < 0.01).

Conclusions

The present ultrasound measurement system offers potential for the detection of subtle change in cartilage. The maximum magnitude is particularly useful for quantitative assessment of medial femoral condyle articular cartilage. This ultrasound measurement system is useful for diagnosis of degenerative cartilage at an early stage.

Level of evidence

Diagnostic, Level III.
Literature
1.
go back to reference Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558PubMed Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558PubMed
2.
go back to reference Bi X, Li G, Doty SB, Camacho NP (2004) A novel method for determination of collagen orientation in cartilage by Fourier transform Infrared imaging spectroscopy (FT-IRIS). Osteoarthr Cartil 13:1050–1058CrossRef Bi X, Li G, Doty SB, Camacho NP (2004) A novel method for determination of collagen orientation in cartilage by Fourier transform Infrared imaging spectroscopy (FT-IRIS). Osteoarthr Cartil 13:1050–1058CrossRef
3.
go back to reference Bolton MC, Dudhia J, Bayliss MT (1999) Age-related changes in the synthesis of link protein and aggrecan in human articular cartilage: implications for aggregate stability. Biochem J 337:77–82PubMedCrossRef Bolton MC, Dudhia J, Bayliss MT (1999) Age-related changes in the synthesis of link protein and aggrecan in human articular cartilage: implications for aggregate stability. Biochem J 337:77–82PubMedCrossRef
4.
go back to reference Buckwalter J, Mow V (2003) Basic science and injury of articular cartilage, menisci, and bone. Section A. In: DeLee J, Drez D, Miller M (eds) Orthopaedic sports medicine, 2nd edn. Saunders, Philadelphia, pp 67–87 Buckwalter J, Mow V (2003) Basic science and injury of articular cartilage, menisci, and bone. Section A. In: DeLee J, Drez D, Miller M (eds) Orthopaedic sports medicine, 2nd edn. Saunders, Philadelphia, pp 67–87
5.
go back to reference Cherin E, Saied A, Laugier P, Netter P, Berger G (1998) Evaluation of acoustical parameter sensitivity to age-related and osteoarthritic changes in articular cartilage using 50-MHz ultrasound. Ultrasound Med Biol 24:341–354PubMedCrossRef Cherin E, Saied A, Laugier P, Netter P, Berger G (1998) Evaluation of acoustical parameter sensitivity to age-related and osteoarthritic changes in articular cartilage using 50-MHz ultrasound. Ultrasound Med Biol 24:341–354PubMedCrossRef
6.
go back to reference Eckstein F, Burstein D, Link TM (2006) Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 19:822–854PubMedCrossRef Eckstein F, Burstein D, Link TM (2006) Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 19:822–854PubMedCrossRef
7.
go back to reference Hattori K, Ikeuchi K, Morita Y, Takakura Y (2005) Quantitative ultrasonic assessment for detecting microscopic cartilage damage in osteoarthritis. Arthritis Res Ther 7:R38–R46PubMedCrossRef Hattori K, Ikeuchi K, Morita Y, Takakura Y (2005) Quantitative ultrasonic assessment for detecting microscopic cartilage damage in osteoarthritis. Arthritis Res Ther 7:R38–R46PubMedCrossRef
8.
go back to reference Hattori K, Mori K, Habata T, Takakura Y, Ikeuchi K (2003) Measurement of the mechanical condition of articular cartilage with an ultrasonic probe: quantitative evaluation using wavelet transformation. Clin Biomech (Bristol, Avon) 18:553–557CrossRef Hattori K, Mori K, Habata T, Takakura Y, Ikeuchi K (2003) Measurement of the mechanical condition of articular cartilage with an ultrasonic probe: quantitative evaluation using wavelet transformation. Clin Biomech (Bristol, Avon) 18:553–557CrossRef
9.
go back to reference Hattori K, Takakura Y, Ishimura M, Habata T, Uematsu K, Ikeuch K (2004) Quantitative arthroscopic ultrasound evaluation of living human cartilage. Clin Biomech (Bristol, Avon) 19:213–216CrossRef Hattori K, Takakura Y, Ishimura M, Habata T, Uematsu K, Ikeuch K (2004) Quantitative arthroscopic ultrasound evaluation of living human cartilage. Clin Biomech (Bristol, Avon) 19:213–216CrossRef
10.
go back to reference Hattori K, Takakura Y, Ishimura M, Tanaka Y, Habata T, Ikeuchi K (2005) Differential acoustic properties of early cartilage lesions in living human knee and ankle joints. Arthritis Rheum 52:3125–3131PubMedCrossRef Hattori K, Takakura Y, Ishimura M, Tanaka Y, Habata T, Ikeuchi K (2005) Differential acoustic properties of early cartilage lesions in living human knee and ankle joints. Arthritis Rheum 52:3125–3131PubMedCrossRef
11.
go back to reference Hattori K, Takakura Y, Tanaka Y et al (2006) Quantitative ultrasound can assess living human cartilage. J Bone Joint Surg Am 88(Suppl 4):201–212PubMedCrossRef Hattori K, Takakura Y, Tanaka Y et al (2006) Quantitative ultrasound can assess living human cartilage. J Bone Joint Surg Am 88(Suppl 4):201–212PubMedCrossRef
12.
go back to reference Hofmann GO, Marticke J, Grossstuck R et al (2009) Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 17:1–8PubMedCrossRef Hofmann GO, Marticke J, Grossstuck R et al (2009) Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 17:1–8PubMedCrossRef
13.
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254:1178–1181PubMedCrossRef Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254:1178–1181PubMedCrossRef
14.
go back to reference Jurvelin JS, Rasanen T, Kolmonen P, Lyyra T (1995) Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J Biomech 28:231–235PubMedCrossRef Jurvelin JS, Rasanen T, Kolmonen P, Lyyra T (1995) Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J Biomech 28:231–235PubMedCrossRef
15.
go back to reference Kiviranta P, Toyras J, Nieminen MT, Laasanen MS, Saarakkala S, Nieminen HJ, Nissi MJ, Jurvelin JS (2007) Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration. Eur Cell Mater 13:46–55PubMed Kiviranta P, Toyras J, Nieminen MT, Laasanen MS, Saarakkala S, Nieminen HJ, Nissi MJ, Jurvelin JS (2007) Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration. Eur Cell Mater 13:46–55PubMed
16.
go back to reference Kuroki H, Nakagawa Y, Mori K et al (2004) Acoustic stiffness and change in plug cartilage over time after autologous osteochondral grafting: correlation between ultrasound signal intensity and histological score in a rabbit model. Arthritis Res Ther 6:R492–R504PubMedCrossRef Kuroki H, Nakagawa Y, Mori K et al (2004) Acoustic stiffness and change in plug cartilage over time after autologous osteochondral grafting: correlation between ultrasound signal intensity and histological score in a rabbit model. Arthritis Res Ther 6:R492–R504PubMedCrossRef
17.
go back to reference Kuroki H, Nakagawa Y, Mori K et al (2009) Ultrasound properties of articular cartilage immediately after osteochondral grafting surgery: in cases of traumatic cartilage lesions and osteonecrosis. Knee Surg Sports Traumatol Arthrosc 17:11–18PubMedCrossRef Kuroki H, Nakagawa Y, Mori K et al (2009) Ultrasound properties of articular cartilage immediately after osteochondral grafting surgery: in cases of traumatic cartilage lesions and osteonecrosis. Knee Surg Sports Traumatol Arthrosc 17:11–18PubMedCrossRef
18.
go back to reference Laasanen MS, Saarakkala S, Toyras J, Rieppo J, Jurvelin JS (2005) Site-specific ultrasound reflection properties and superficial collagen content of bovine knee articular cartilage. Phys Med Biol 50:3221–3233PubMedCrossRef Laasanen MS, Saarakkala S, Toyras J, Rieppo J, Jurvelin JS (2005) Site-specific ultrasound reflection properties and superficial collagen content of bovine knee articular cartilage. Phys Med Biol 50:3221–3233PubMedCrossRef
19.
go back to reference Lammentausta E, Kiviranta P, Toyras J, Hyttinen MM, Kiviranta I, Nieminen MT, Jurvelin JS (2007) Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration. Osteoarthr Cartil 15:1149–1157PubMedCrossRef Lammentausta E, Kiviranta P, Toyras J, Hyttinen MM, Kiviranta I, Nieminen MT, Jurvelin JS (2007) Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration. Osteoarthr Cartil 15:1149–1157PubMedCrossRef
20.
go back to reference Li X, Martin S, Pitris C, Ghanta R, Stamper DL, Harman M, Fujimoto JG, Brezinski ME (2005) High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthritis Res Ther 7:R318–R323PubMedCrossRef Li X, Martin S, Pitris C, Ghanta R, Stamper DL, Harman M, Fujimoto JG, Brezinski ME (2005) High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthritis Res Ther 7:R318–R323PubMedCrossRef
21.
go back to reference Lyyra T, Jurvelin J, Pitkanen P, Vaatainen U, Kiviranta I (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 17:395–399PubMedCrossRef Lyyra T, Jurvelin J, Pitkanen P, Vaatainen U, Kiviranta I (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 17:395–399PubMedCrossRef
22.
go back to reference Lyyra T, Arokoski JPA, Oksala N, Vihko A, Hyttinen M, Jurvelin J, Kiviranta I (1999) Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples. Phys Med Biol 44:525–535PubMedCrossRef Lyyra T, Arokoski JPA, Oksala N, Vihko A, Hyttinen M, Jurvelin J, Kiviranta I (1999) Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples. Phys Med Biol 44:525–535PubMedCrossRef
23.
go back to reference Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin J (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. Biomed Master Res 48:482–487CrossRef Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin J (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. Biomed Master Res 48:482–487CrossRef
24.
go back to reference Modest VE, Murphy MC, Mann RW (1989) Optical verification of a technique for in situ ultrasonic measurement of articular cartilage thickness. J Biomech 22:171–176PubMedCrossRef Modest VE, Murphy MC, Mann RW (1989) Optical verification of a technique for in situ ultrasonic measurement of articular cartilage thickness. J Biomech 22:171–176PubMedCrossRef
25.
go back to reference Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 177:665–669PubMed Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 177:665–669PubMed
26.
go back to reference Myers SL, Dines K, Brandt DA, Brandt KD, Albrecht ME (1995) Experimental assessment by high frequency ultrasound of articular cartilage thickness and osteoarthritic changes. J Rheumatol 22:109–116PubMed Myers SL, Dines K, Brandt DA, Brandt KD, Albrecht ME (1995) Experimental assessment by high frequency ultrasound of articular cartilage thickness and osteoarthritic changes. J Rheumatol 22:109–116PubMed
27.
go back to reference Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43:752–757PubMed Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43:752–757PubMed
28.
go back to reference Potter K, Kidder LH, Levin IW, Lewis EN, Spencer RGS (2001) Imaging of collagen and proteoglycan in cartilage sections using fourier transform infrared spectral imaging. Arthritis Rheum 44:846–855PubMedCrossRef Potter K, Kidder LH, Levin IW, Lewis EN, Spencer RGS (2001) Imaging of collagen and proteoglycan in cartilage sections using fourier transform infrared spectral imaging. Arthritis Rheum 44:846–855PubMedCrossRef
29.
go back to reference Saarakkala S, Toyras J, Hirvonen J, Laasanen MS, Lappalainen R, Jurvelin JS (2004) Ultrasonic quantitation of superficial degradation of articular cartilage. Ultrasound Med Biol 30:783–792PubMedCrossRef Saarakkala S, Toyras J, Hirvonen J, Laasanen MS, Lappalainen R, Jurvelin JS (2004) Ultrasonic quantitation of superficial degradation of articular cartilage. Ultrasound Med Biol 30:783–792PubMedCrossRef
30.
go back to reference Suh JK, Youn I, Fu FH (2001) An in situ calibration of an ultrasound transducer: a potential application for an ultrasonic indentation test of articular cartilage. J Biomech 34:1347–1353PubMedCrossRef Suh JK, Youn I, Fu FH (2001) An in situ calibration of an ultrasound transducer: a potential application for an ultrasonic indentation test of articular cartilage. J Biomech 34:1347–1353PubMedCrossRef
31.
go back to reference Yao JQ, Seedhom BB (1999) Ultrasonic measurement of the thickness of human articular cartilage in situ. Rheumatology (Oxford) 38:1269–1271CrossRef Yao JQ, Seedhom BB (1999) Ultrasonic measurement of the thickness of human articular cartilage in situ. Rheumatology (Oxford) 38:1269–1271CrossRef
32.
go back to reference Yoon CH, Kim HS, Ju JH, Jee WH, Park SH, Kim HY (2008) Validity of the sonographic longitudinal sagittal image for assessment of the cartilage thickness in the knee osteoarthritis. Clin Rheumatol 27:1507–1516PubMedCrossRef Yoon CH, Kim HS, Ju JH, Jee WH, Park SH, Kim HY (2008) Validity of the sonographic longitudinal sagittal image for assessment of the cartilage thickness in the knee osteoarthritis. Clin Rheumatol 27:1507–1516PubMedCrossRef
Metadata
Title
Ultrasonic probe is useful for in vivo quantitative assessment of medial femoral condyle articular cartilage
Authors
Takashi Shimizu
Shigeyuki Wakitani
Yoshinari Tanaka
Yasukazu Yonetani
Yoshiki Shiozaki
Katsuji Shimizu
Shuji Horibe
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 11/2011
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-011-1500-6

Other articles of this Issue 11/2011

Knee Surgery, Sports Traumatology, Arthroscopy 11/2011 Go to the issue