Skip to main content
Top
Published in: Intensive Care Medicine 8/2022

Open Access 02-07-2022 | Original

Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial

Authors: Chiara Robba, Rafael Badenes, Denise Battaglini, Lorenzo Ball, Iole Brunetti, Janus C. Jakobsen, Gisela Lilja, Hans Friberg, Pedro D. Wendel-Garcia, Paul J. Young, Glenn Eastwood, Michelle S. Chew, Johan Unden, Matthew Thomas, Michael Joannidis, Alistair Nichol, Andreas Lundin, Jacob Hollenberg, Naomi Hammond, Manoj Saxena, Martin Annborn, Miroslav Solar, Fabio S. Taccone, Josef Dankiewicz, Niklas Nielsen, Paolo Pelosi, TTM2 Trial Collaborators

Published in: Intensive Care Medicine | Issue 8/2022

Login to get access

Abstract

Purpose

The optimal ventilatory settings in patients after cardiac arrest and their association with outcome remain unclear. The aim of this study was to describe the ventilatory settings applied in the first 72 h of mechanical ventilation in patients after out-of-hospital cardiac arrest and their association with 6-month outcomes.

Methods

Preplanned sub-analysis of the Target Temperature Management-2 trial. Clinical outcomes were mortality and functional status (assessed by the Modified Rankin Scale) 6 months after randomization.

Results

A total of 1848 patients were included (mean age 64 [Standard Deviation, SD = 14] years). At 6 months, 950 (51%) patients were alive and 898 (49%) were dead. Median tidal volume (VT) was 7 (Interquartile range, IQR = 6.2–8.5) mL per Predicted Body Weight (PBW), positive end expiratory pressure (PEEP) was 7 (IQR = 5–9) cmH20, plateau pressure was 20 cmH20 (IQR = 17–23), driving pressure was 12 cmH20 (IQR = 10–15), mechanical power 16.2 J/min (IQR = 12.1–21.8), ventilatory ratio was 1.27 (IQR = 1.04–1.6), and respiratory rate was 17 breaths/minute (IQR = 14–20). Median partial pressure of oxygen was 87 mmHg (IQR = 75–105), and partial pressure of carbon dioxide was 40.5 mmHg (IQR = 36–45.7). Respiratory rate, driving pressure, and mechanical power were independently associated with 6-month mortality (omnibus p-values for their non-linear trajectories: p < 0.0001, p = 0.026, and p = 0.029, respectively). Respiratory rate and driving pressure were also independently associated with poor neurological outcome (odds ratio, OR = 1.035, 95% confidence interval, CI = 1.003–1.068, p = 0.030, and OR = 1.005, 95% CI = 1.001–1.036, p = 0.048). A composite formula calculated as [(4*driving pressure) + respiratory rate] was independently associated with mortality and poor neurological outcome.

Conclusions

Protective ventilation strategies are commonly applied in patients after cardiac arrest. Ventilator settings in the first 72 h after hospital admission, in particular driving pressure and respiratory rate, may influence 6-month outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim Y-M, Yim H-W, Jeong S-H, Klem ML, Callaway CW (2012) Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms? A systematic review and meta-analysis of randomized and non-randomized studies. Resuscitation 83:188–196PubMedCrossRef Kim Y-M, Yim H-W, Jeong S-H, Klem ML, Callaway CW (2012) Does therapeutic hypothermia benefit adult cardiac arrest patients presenting with non-shockable initial rhythms? A systematic review and meta-analysis of randomized and non-randomized studies. Resuscitation 83:188–196PubMedCrossRef
2.
go back to reference Robba C, Siwicka-Gieroba D, Sikter A, Battaglini D, Dąbrowski W, Schultz MJ et al (2020) Pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest. Intensive Care Med Exp 8:19PubMedPubMedCentralCrossRef Robba C, Siwicka-Gieroba D, Sikter A, Battaglini D, Dąbrowski W, Schultz MJ et al (2020) Pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest. Intensive Care Med Exp 8:19PubMedPubMedCentralCrossRef
3.
go back to reference Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788PubMedCrossRef Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788PubMedCrossRef
4.
go back to reference Neto AS, Barbas CSV, Simonis FD, Artigas-Raventós A, Canet J, Determann RM et al (2016) Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study. Lancet Respir Med 4:882–893PubMedCrossRef Neto AS, Barbas CSV, Simonis FD, Artigas-Raventós A, Canet J, Determann RM et al (2016) Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study. Lancet Respir Med 4:882–893PubMedCrossRef
5.
go back to reference Sutherasan Y, Peñuelas O, Muriel A, Vargas M, Frutos-Vivar F, Brunetti I et al (2015) Management and outcome of mechanically ventilated patients after cardiac arrest. Crit Care 19:215PubMedPubMedCentralCrossRef Sutherasan Y, Peñuelas O, Muriel A, Vargas M, Frutos-Vivar F, Brunetti I et al (2015) Management and outcome of mechanically ventilated patients after cardiac arrest. Crit Care 19:215PubMedPubMedCentralCrossRef
6.
go back to reference Harmon MBA, van Meenen DMP, van der Veen ALIP, Binnekade JM, Dankiewicz J, Ebner F et al (2018) Practice of mechanical ventilation in cardiac arrest patients and effects of targeted temperature management: a substudy of the targeted temperature management trial. Resuscitation 129:29–36PubMedCrossRef Harmon MBA, van Meenen DMP, van der Veen ALIP, Binnekade JM, Dankiewicz J, Ebner F et al (2018) Practice of mechanical ventilation in cardiac arrest patients and effects of targeted temperature management: a substudy of the targeted temperature management trial. Resuscitation 129:29–36PubMedCrossRef
7.
go back to reference EL Costa V, Slutsky AS, Brochard LJ, Brower R, Serpa-Neto A, Cavalcanti AB et al (2021) Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 204:303–311PubMedCrossRef EL Costa V, Slutsky AS, Brochard LJ, Brower R, Serpa-Neto A, Cavalcanti AB et al (2021) Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 204:303–311PubMedCrossRef
8.
go back to reference Robba C, Nielsen N, Dankiewicz J, Badenes R, Battaglini D, Ball L et al (2022) Ventilation management and outcomes in out-of-hospital cardiac arrest: a protocol for a preplanned secondary analysis of the TTM2 trial. BMJ Open 12:e058001PubMedPubMedCentralCrossRef Robba C, Nielsen N, Dankiewicz J, Badenes R, Battaglini D, Ball L et al (2022) Ventilation management and outcomes in out-of-hospital cardiac arrest: a protocol for a preplanned secondary analysis of the TTM2 trial. BMJ Open 12:e058001PubMedPubMedCentralCrossRef
9.
go back to reference Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Bělohlávek J, Callaway C et al (2019) Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): a randomized clinical trial—rationale and design. Am Heart J 217:23–31PubMedCrossRef Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Bělohlávek J, Callaway C et al (2019) Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): a randomized clinical trial—rationale and design. Am Heart J 217:23–31PubMedCrossRef
10.
go back to reference Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S et al (2021) Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med 384:2283–2294PubMedCrossRef Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S et al (2021) Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med 384:2283–2294PubMedCrossRef
11.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457CrossRef
12.
go back to reference Charlson M, Szatrowski TP, Peterson J, Gold J (1994) Validation of a combined comorbidity index. J Clin Epidemiol 47:1245–1251PubMedCrossRef Charlson M, Szatrowski TP, Peterson J, Gold J (1994) Validation of a combined comorbidity index. J Clin Epidemiol 47:1245–1251PubMedCrossRef
13.
go back to reference Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O et al (2016) Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 42:1567–1575PubMedCrossRef Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O et al (2016) Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 42:1567–1575PubMedCrossRef
14.
go back to reference Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA et al (2019) Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 199:333–341PubMedPubMedCentralCrossRef Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA et al (2019) Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 199:333–341PubMedPubMedCentralCrossRef
15.
go back to reference Royston P, Saurbrei W (2008) Multivariable model-building: a pragmatic approach to regression anaylsis based on fractional polynomials for modelling continuous variables. Royston P, Saurbrei W (2008) Multivariable model-building: a pragmatic approach to regression anaylsis based on fractional polynomials for modelling continuous variables.
16.
go back to reference Jann B (2020) Relative distribution analysis in Stata. Stata J [Internet] 21:885–951CrossRef Jann B (2020) Relative distribution analysis in Stata. Stata J [Internet] 21:885–951CrossRef
17.
go back to reference Young PJ, Bailey M, Bellomo R, Bernard S, Bray J, Jakkula P et al (2020) Conservative or liberal oxygen therapy in adults after cardiac arrest. Resuscitation 157:15–22PubMedCrossRef Young PJ, Bailey M, Bellomo R, Bernard S, Bray J, Jakkula P et al (2020) Conservative or liberal oxygen therapy in adults after cardiac arrest. Resuscitation 157:15–22PubMedCrossRef
18.
go back to reference Roberts BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Trzeciak S (2013) Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post–cardiac arrest syndrome. Circulation 127:2107–2113PubMedCrossRef Roberts BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Trzeciak S (2013) Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post–cardiac arrest syndrome. Circulation 127:2107–2113PubMedCrossRef
19.
go back to reference Palmer E, Post B, Klapaukh R, Marra G, MacCallum NS, Brealey D et al (2019) The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients. A multicenter observational cohort study. Am J Respir Crit Care Med 200:1373–1380PubMedPubMedCentralCrossRef Palmer E, Post B, Klapaukh R, Marra G, MacCallum NS, Brealey D et al (2019) The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients. A multicenter observational cohort study. Am J Respir Crit Care Med 200:1373–1380PubMedPubMedCentralCrossRef
20.
go back to reference Pilcher J, Weatherall M, Shirtcliffe P, Bellomo R, Young P, Beasley R (2012) The effect of hyperoxia following cardiac arrest: a systematic review and meta-analysis of animal trials. Resuscitation 83:417–422PubMedCrossRef Pilcher J, Weatherall M, Shirtcliffe P, Bellomo R, Young P, Beasley R (2012) The effect of hyperoxia following cardiac arrest: a systematic review and meta-analysis of animal trials. Resuscitation 83:417–422PubMedCrossRef
21.
go back to reference Roberts BW, Kilgannon J, Chansky ME, Trzeciak S (2014) Association between initial prescribed minute ventilation and post-resuscitation partial pressure of arterial carbon dioxide in patients with post-cardiac arrest syndrome. Ann Intensive Care 4:9PubMedPubMedCentralCrossRef Roberts BW, Kilgannon J, Chansky ME, Trzeciak S (2014) Association between initial prescribed minute ventilation and post-resuscitation partial pressure of arterial carbon dioxide in patients with post-cardiac arrest syndrome. Ann Intensive Care 4:9PubMedPubMedCentralCrossRef
22.
go back to reference Tejerina E, Pelosi P, Muriel A, Peñuelas O, Sutherasan Y, Frutos-Vivar F et al (2017) Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care 38:341–345PubMedCrossRef Tejerina E, Pelosi P, Muriel A, Peñuelas O, Sutherasan Y, Frutos-Vivar F et al (2017) Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care 38:341–345PubMedCrossRef
23.
go back to reference Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H et al (2021) European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 47:369–421PubMedPubMedCentralCrossRef Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H et al (2021) European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 47:369–421PubMedPubMedCentralCrossRef
24.
go back to reference Lundbye JB, Rai M, Ramu B, Hosseini-Khalili A, Li D, Slim HB et al (2012) Therapeutic hypothermia is associated with improved neurologic outcome and survival in cardiac arrest survivors of non-shockable rhythms. Resuscitation 83:202–207PubMedCrossRef Lundbye JB, Rai M, Ramu B, Hosseini-Khalili A, Li D, Slim HB et al (2012) Therapeutic hypothermia is associated with improved neurologic outcome and survival in cardiac arrest survivors of non-shockable rhythms. Resuscitation 83:202–207PubMedCrossRef
25.
go back to reference Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H et al (2021) European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: post-resuscitation care. Resuscitation 161:220–269PubMedCrossRef Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H et al (2021) European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: post-resuscitation care. Resuscitation 161:220–269PubMedCrossRef
26.
go back to reference Serpa Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM et al (2018) Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 44:1914–1922PubMedCrossRef Serpa Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM et al (2018) Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 44:1914–1922PubMedCrossRef
27.
go back to reference Coppola S, Caccioppola A, Froio S, Formenti P, De Giorgis V, Galanti V et al (2020) Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care 24:246PubMedPubMedCentralCrossRef Coppola S, Caccioppola A, Froio S, Formenti P, De Giorgis V, Galanti V et al (2020) Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care 24:246PubMedPubMedCentralCrossRef
28.
go back to reference Bellani G, Grassi A, Sosio S, Gatti S, Kavanagh BP, Pesenti A et al (2019) Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology 131:594–604PubMedCrossRef Bellani G, Grassi A, Sosio S, Gatti S, Kavanagh BP, Pesenti A et al (2019) Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology 131:594–604PubMedCrossRef
29.
go back to reference Toufen Junior C, De Santis Santiago RR, Hirota AS, Carvalho ARS, Gomes S, Amato MBP et al (2018) Driving pressure and long-term outcomes in moderate/severe acute respiratory distress syndrome. Ann Intensive Care 8:119PubMedPubMedCentralCrossRef Toufen Junior C, De Santis Santiago RR, Hirota AS, Carvalho ARS, Gomes S, Amato MBP et al (2018) Driving pressure and long-term outcomes in moderate/severe acute respiratory distress syndrome. Ann Intensive Care 8:119PubMedPubMedCentralCrossRef
30.
go back to reference Guo L, Xie J, Huang Y, Pan C, Yang Y, Qiu H et al (2018) Higher PEEP improves outcomes in ARDS patients with clinically objective positive oxygenation response to PEEP: a systematic review and meta-analysis. BMC Anesthesiol 18:172PubMedPubMedCentralCrossRef Guo L, Xie J, Huang Y, Pan C, Yang Y, Qiu H et al (2018) Higher PEEP improves outcomes in ARDS patients with clinically objective positive oxygenation response to PEEP: a systematic review and meta-analysis. BMC Anesthesiol 18:172PubMedPubMedCentralCrossRef
31.
go back to reference Serpa Neto A, Filho RR, Cherpanath T, Determann R, Dongelmans DA, Paulus F et al (2016) Associations between positive end-expiratory pressure and outcome of patients without ARDS at onset of ventilation: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care 6:109PubMedPubMedCentralCrossRef Serpa Neto A, Filho RR, Cherpanath T, Determann R, Dongelmans DA, Paulus F et al (2016) Associations between positive end-expiratory pressure and outcome of patients without ARDS at onset of ventilation: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care 6:109PubMedPubMedCentralCrossRef
32.
go back to reference Torres A, Motos A, Riera J, Fernández-Barat L, Ceccato A, Pérez-Arnal R et al (2021) The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients. Crit Care 25:331PubMedPubMedCentralCrossRef Torres A, Motos A, Riera J, Fernández-Barat L, Ceccato A, Pérez-Arnal R et al (2021) The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients. Crit Care 25:331PubMedPubMedCentralCrossRef
33.
go back to reference Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRef Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRef
34.
go back to reference Brower R, Matthay M, Morris A, Schoenfeld D, Thompson B, Wheeler A (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308PubMedCrossRef Brower R, Matthay M, Morris A, Schoenfeld D, Thompson B, Wheeler A (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308PubMedCrossRef
35.
go back to reference Simonis FD, Serpa Neto A, Binnekade JM, Braber A, Bruin KCM, Determann RM et al (2018) Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS. JAMA 320:1872PubMedPubMedCentralCrossRef Simonis FD, Serpa Neto A, Binnekade JM, Braber A, Bruin KCM, Determann RM et al (2018) Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS. JAMA 320:1872PubMedPubMedCentralCrossRef
36.
go back to reference Tiruvoipati R, Pilcher D, Botha J, Buscher H, Simister R, Bailey M (2018) Association of hypercapnia and hypercapnic acidosis with clinical outcomes in mechanically ventilated patients with cerebral injury. JAMA Neurol 75:818–826PubMedPubMedCentralCrossRef Tiruvoipati R, Pilcher D, Botha J, Buscher H, Simister R, Bailey M (2018) Association of hypercapnia and hypercapnic acidosis with clinical outcomes in mechanically ventilated patients with cerebral injury. JAMA Neurol 75:818–826PubMedPubMedCentralCrossRef
37.
go back to reference Beitler JR, Ghafouri TB, Jinadasa SP, Mueller A, Hsu L, Anderson RJ et al (2017) Favorable neurocognitive outcome with low tidal volume ventilation after cardiac arrest. Am J Respir Crit Care Med 195:1198–1206PubMedPubMedCentralCrossRef Beitler JR, Ghafouri TB, Jinadasa SP, Mueller A, Hsu L, Anderson RJ et al (2017) Favorable neurocognitive outcome with low tidal volume ventilation after cardiac arrest. Am J Respir Crit Care Med 195:1198–1206PubMedPubMedCentralCrossRef
38.
go back to reference Eastwood GM, Nichol A (2020) Optimal ventilator settings after return of spontaneous circulation. Curr Opin Crit Care 26:251–258PubMedCrossRef Eastwood GM, Nichol A (2020) Optimal ventilator settings after return of spontaneous circulation. Curr Opin Crit Care 26:251–258PubMedCrossRef
39.
go back to reference Eastwood GM, Young PJ, Bellomo R (2014) The impact of oxygen and carbon dioxide management on outcome after cardiac arrest. Curr Opin Crit Care 20:266–272PubMedCrossRef Eastwood GM, Young PJ, Bellomo R (2014) The impact of oxygen and carbon dioxide management on outcome after cardiac arrest. Curr Opin Crit Care 20:266–272PubMedCrossRef
40.
go back to reference Farias LL, Faffe DS, Xisto DG, Santana MCE, Lassance R, Prota LFM et al (2005) Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol 98:53–61PubMedCrossRef Farias LL, Faffe DS, Xisto DG, Santana MCE, Lassance R, Prota LFM et al (2005) Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol 98:53–61PubMedCrossRef
41.
go back to reference Ricard J-D, Dreyfuss D, Saumon G (2003) Ventilator-induced lung injury. Eur Respir J 22:2s–9sCrossRef Ricard J-D, Dreyfuss D, Saumon G (2003) Ventilator-induced lung injury. Eur Respir J 22:2s–9sCrossRef
42.
go back to reference Schaefer MS, Serpa Neto A, Pelosi P, de Gama AM, Kienbaum P, Schultz MJ et al (2019) Temporal changes in ventilator settings in patients with uninjured lungs. Anesth Analg 129:129–140PubMedCrossRef Schaefer MS, Serpa Neto A, Pelosi P, de Gama AM, Kienbaum P, Schultz MJ et al (2019) Temporal changes in ventilator settings in patients with uninjured lungs. Anesth Analg 129:129–140PubMedCrossRef
43.
go back to reference Tejerina EE, Pelosi P, Robba C, Peñuelas O, Muriel A, Barrios D et al (2021) Evolution over time of ventilatory management and outcome of patients with neurologic disease. Crit Care Med 49:1095–1106PubMed Tejerina EE, Pelosi P, Robba C, Peñuelas O, Muriel A, Barrios D et al (2021) Evolution over time of ventilatory management and outcome of patients with neurologic disease. Crit Care Med 49:1095–1106PubMed
44.
go back to reference Esteban A (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345PubMedCrossRef Esteban A (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345PubMedCrossRef
46.
go back to reference Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M et al (2016) Mechanical power and development of ventilator-induced lung injury. Anesthesiology 124:1100–1108PubMedCrossRef Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M et al (2016) Mechanical power and development of ventilator-induced lung injury. Anesthesiology 124:1100–1108PubMedCrossRef
47.
go back to reference Scharffenberg M, Wittenstein J, Ran X, Zhang Y, Braune A, Theilen R et al (2021) Mechanical power correlates with lung inflammation assessed by positron-emission tomography in experimental acute lung injury in pigs. Front Physiol 12:717266PubMedPubMedCentralCrossRef Scharffenberg M, Wittenstein J, Ran X, Zhang Y, Braune A, Theilen R et al (2021) Mechanical power correlates with lung inflammation assessed by positron-emission tomography in experimental acute lung injury in pigs. Front Physiol 12:717266PubMedPubMedCentralCrossRef
48.
go back to reference Malik AB, Krasney JA, Royce GJ (1977) Respiratory influence on the total and regional cerebral blood flow responses to intracranial hypertension. Stroke 8:243–249PubMedCrossRef Malik AB, Krasney JA, Royce GJ (1977) Respiratory influence on the total and regional cerebral blood flow responses to intracranial hypertension. Stroke 8:243–249PubMedCrossRef
49.
go back to reference Heffner JE (1983) Controlled hyperventilation in patients with intracranial hypertension. Arch Intern Med 143:765PubMedCrossRef Heffner JE (1983) Controlled hyperventilation in patients with intracranial hypertension. Arch Intern Med 143:765PubMedCrossRef
50.
go back to reference Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet J-F, Eisner MD et al (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346:1281–1286PubMedCrossRef Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet J-F, Eisner MD et al (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346:1281–1286PubMedCrossRef
51.
go back to reference Goligher EC, EL Costa V, Yarnell CJ, Brochard LJ, Stewart TE, Tomlinson G et al (2021) Effect of lowering Vt on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am J Respir Crit Care Med 203:1378–1385PubMedCrossRef Goligher EC, EL Costa V, Yarnell CJ, Brochard LJ, Stewart TE, Tomlinson G et al (2021) Effect of lowering Vt on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am J Respir Crit Care Med 203:1378–1385PubMedCrossRef
Metadata
Title
Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial
Authors
Chiara Robba
Rafael Badenes
Denise Battaglini
Lorenzo Ball
Iole Brunetti
Janus C. Jakobsen
Gisela Lilja
Hans Friberg
Pedro D. Wendel-Garcia
Paul J. Young
Glenn Eastwood
Michelle S. Chew
Johan Unden
Matthew Thomas
Michael Joannidis
Alistair Nichol
Andreas Lundin
Jacob Hollenberg
Naomi Hammond
Manoj Saxena
Martin Annborn
Miroslav Solar
Fabio S. Taccone
Josef Dankiewicz
Niklas Nielsen
Paolo Pelosi
TTM2 Trial Collaborators
Publication date
02-07-2022
Publisher
Springer Berlin Heidelberg
Published in
Intensive Care Medicine / Issue 8/2022
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-022-06756-4

Other articles of this Issue 8/2022

Intensive Care Medicine 8/2022 Go to the issue