Skip to main content
Top
Published in: Intensive Care Medicine 9/2018

01-09-2018 | Editorial

The gut microbiota of critically ill patients: first steps in an unexplored world

Authors: Étienne Ruppé, Thiago Lisboa, François Barbier

Published in: Intensive Care Medicine | Issue 9/2018

Login to get access

Excerpt

The gut microbiota is a complex ecosystem encompassing all bacteria, fungi, archaea, viruses, and protozoa that colonize the intestinal tract, reaching in healthy humans an estimated total of 3.1013 microorganisms that roughly equals the number of host cells [1]. Bacterial commensals are divided up into seven main phyla that are physiologically dominated by Firmicutes and Bacteroidetes (Fig. 1), although their richness and diversity may exhibit substantial inter- as intra-individual variations depending on genetic, dietary, and environmental factors [2]. Several host-benefic functions have been linked to a “normal” gut microbiota and its symbiotic relationship with the intestinal mucosa, including contributions to hormonal homeostasis, carbohydrate and biliary acid metabolism, vitamin synthesis, anti-inflammatory pathways, and immune regulation [3]. Of note, most enteric bacteria are unculturable or exclusively grow under strict anaerobic conditions that are very demanding to achieve in experimental laboratories, which justifies the need for non-culture-based assays and bioinformatics to investigate the composition of this microbial community. Two main methods based on nucleic acid sequencing are currently available. The first one is 16S profiling, which relies on PCR-based amplification and sequencing of a fraction of the bacterial ubiquitous 16S rRNA-encoding gene. This approach is simple and cheap—less than 100 USD per sample; however, bacterial identifications are often limited to high taxonomic levels. The second one, referred to as shotgun metagenomics, consists in sequencing the whole DNA of a given sample without prior amplification. This method allows more accurate taxonomic assignments (down to species level, including for non-bacterial components of the microbiota) while providing information on resistance or virulence genes content. Yet, associated costs—more than 300 USD per sample—and the complex data analyses that it requires hamper the use of shotgun metagenomics in large clinical studies.
Literature
2.
go back to reference Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841CrossRefPubMed Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841CrossRefPubMed
5.
go back to reference Lankelma JM, van Vught LA, Belzer C, Schultz MJ, van der Poll T, de Vos WM, Wiersinga WJ (2017) Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med 43(1):59–68CrossRefPubMed Lankelma JM, van Vught LA, Belzer C, Schultz MJ, van der Poll T, de Vos WM, Wiersinga WJ (2017) Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med 43(1):59–68CrossRefPubMed
6.
go back to reference Yeh A, Rogers MB, Firek B, Neal MD, Zuckerbraun BS, Morowitz MJ (2016) Dysbiosis across multiple body sites in critically ill adult surgical patients. Shock 46(6):649–654CrossRefPubMed Yeh A, Rogers MB, Firek B, Neal MD, Zuckerbraun BS, Morowitz MJ (2016) Dysbiosis across multiple body sites in critically ill adult surgical patients. Shock 46(6):649–654CrossRefPubMed
7.
go back to reference Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K, Nakamura S, Ogura H, Iida T, Shimazu T (2016) Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 61(6):1628–1634CrossRefPubMed Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K, Nakamura S, Ogura H, Iida T, Shimazu T (2016) Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 61(6):1628–1634CrossRefPubMed
8.
go back to reference Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, Huffnagle GB (2016) Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol 1(10):16113CrossRefPubMedPubMedCentral Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, Huffnagle GB (2016) Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol 1(10):16113CrossRefPubMedPubMedCentral
9.
go back to reference Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes-Vieira PM, Hiyane MI, Rodas AC, Peron JP, Aguiar CF, Reis MA, Ribeiro WR, Valduga CJ, Curi R, Vinolo MA, Ferreira CM, Camara NO (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888CrossRefPubMedPubMedCentral Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes-Vieira PM, Hiyane MI, Rodas AC, Peron JP, Aguiar CF, Reis MA, Ribeiro WR, Valduga CJ, Curi R, Vinolo MA, Ferreira CM, Camara NO (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888CrossRefPubMedPubMedCentral
10.
go back to reference Schieber AM, Lee YM, Chang MW, Leblanc M, Collins B, Downes M, Evans RM, Ayres JS (2015) Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350(6260):558–563CrossRefPubMed Schieber AM, Lee YM, Chang MW, Leblanc M, Collins B, Downes M, Evans RM, Ayres JS (2015) Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350(6260):558–563CrossRefPubMed
12.
go back to reference Caballero S, Kim S, Carter RA, Leiner JM, Susac B, Miller L, Kim GJ, Ling L, Pamer EG (2017) Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21:592–602CrossRefPubMedPubMedCentral Caballero S, Kim S, Carter RA, Leiner JM, Susac B, Miller L, Kim GJ, Ling L, Pamer EG (2017) Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21:592–602CrossRefPubMedPubMedCentral
13.
go back to reference Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MR, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517(7533):205–208CrossRefPubMed Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MR, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517(7533):205–208CrossRefPubMed
14.
go back to reference Gosalbes MJ, Vazquez-Castellanos JF, Angebault C, Woerther PL, Ruppé E, Ferrus ML, Latorre A, Andremont A, Moya A (2015) Carriage of enterobacteria producing extended-spectrum β-lactamases and composition of the gut microbiota in an Amerindian community. Antimicrob Agents Chemother 60:507–514CrossRefPubMedPubMedCentral Gosalbes MJ, Vazquez-Castellanos JF, Angebault C, Woerther PL, Ruppé E, Ferrus ML, Latorre A, Andremont A, Moya A (2015) Carriage of enterobacteria producing extended-spectrum β-lactamases and composition of the gut microbiota in an Amerindian community. Antimicrob Agents Chemother 60:507–514CrossRefPubMedPubMedCentral
15.
go back to reference Ruppé E, Andremont A (2013) Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Front Microbiol 4:129CrossRefPubMedPubMedCentral Ruppé E, Andremont A (2013) Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Front Microbiol 4:129CrossRefPubMedPubMedCentral
16.
17.
go back to reference de Gunzburg J, Ghozlane A, Ducher A, Le Chatelier E, Duval X, Ruppé E, Armand-Lefevre L, Sablier-Gallis F, Burdet C, Alavoine L, Chachaty E, Augustin V, Varastet M, Levenez F, Kennedy S, Pons N, Mentré F, Andremont A (2018) Protection of the human gut microbiome from antibiotics. J Infect Dis 217:628–636CrossRefPubMed de Gunzburg J, Ghozlane A, Ducher A, Le Chatelier E, Duval X, Ruppé E, Armand-Lefevre L, Sablier-Gallis F, Burdet C, Alavoine L, Chachaty E, Augustin V, Varastet M, Levenez F, Kennedy S, Pons N, Mentré F, Andremont A (2018) Protection of the human gut microbiome from antibiotics. J Infect Dis 217:628–636CrossRefPubMed
18.
go back to reference Haak BW, Levi M, Wiersinga WJ (2017) Microbiota-targeted therapies in the intensive care unit. Curr Opin Crit Care 23(2):167–174CrossRefPubMed Haak BW, Levi M, Wiersinga WJ (2017) Microbiota-targeted therapies in the intensive care unit. Curr Opin Crit Care 23(2):167–174CrossRefPubMed
Metadata
Title
The gut microbiota of critically ill patients: first steps in an unexplored world
Authors
Étienne Ruppé
Thiago Lisboa
François Barbier
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Intensive Care Medicine / Issue 9/2018
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-018-5309-3

Other articles of this Issue 9/2018

Intensive Care Medicine 9/2018 Go to the issue

Imaging in Intensive Care Medicine

Acute sulfamethoxazole-induced crystal nephropathy