Skip to main content
Top
Published in: Intensive Care Medicine 8/2011

01-08-2011 | Experimental

Levosimendan attenuates pulmonary vascular remodeling

Authors: M. Revermann, M. Schloss, A. Mieth, A. Babelova, K. Schröder, S. Neofitidou, J. Buerkl, T. Kirschning, R. T. Schermuly, C. Hofstetter, R. P. Brandes

Published in: Intensive Care Medicine | Issue 8/2011

Login to get access

Abstract

Purpose

The calcium-sensitizing drug levosimendan increases myocardial contractility and, by activating K+-channels, dilates pulmonary vessels. In the acute setting, levosimendan is clinically used to treat right heart failure in pulmonary hypertension. As K+-channel activation elicits several beneficial effects in the vascular system, we hypothesized that levosimendan also attenuates the remodeling process in the monocrotaline model of rat pulmonary hypertension.

Methods and results

Animal subgroups received levosimendan, the K+-channel opener nicorandil, or levosimendan together with the K+-adenosine triphosphate (ATP)-sensitive potassium channel (KATP) blocker glibenclamide. Morphometric analyses revealed that levosimendan and nicorandil attenuated the increased pulmonary vascular medial wall thickness after monocrotaline challenge. Accordingly, in vivo BrdU assays revealed that levosimendan significantly diminished proliferation of pulmonary arterial smooth muscle cells (PASMCs), and this effect was attenuated by glibenclamide. Levosimendan also reduced right ventricular hypertrophy, but this effect was not glibenclamide sensitive and not recapitulated by nicorandil. In cell culture, levosimendan had a direct inhibitory effect on the platelet-derived growth factor (PDGF)-induced proliferation of PASMCs, which however required high concentrations of the compound, pointing towards an endothelial effect. Indeed, levosimendan increased cyclic guanosine monophosphate (cGMP) in human umbilical vein endothelial cells (HUVECs) and impaired the tumor necrosis factor-α (TNF-α)-induced inflammatory expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), and monocyte chemotactic protein-1 (MCP-1). In luciferase reporter gene assays in HUVECs, levosimendan dose-dependently attenuated the TNF-α-stimulated increase of proinflammatory transcription factors activator protein 1 (AP1), hypoxia-inducible factor-1α (HIF-1α), and nuclear factor-κB (NF-κB).

Conclusions

Levosimendan attenuates pulmonary vascular remodeling, presumably by an antiproliferative and anti-inflammatory effect which is mediated by cellular hyperpolarization. The compound also has a direct inhibitory effect on cardiac hypertrophy, which is however K+-channel independent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19PubMedCrossRef Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19PubMedCrossRef
2.
go back to reference Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24SPubMedCrossRef Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24SPubMedCrossRef
3.
go back to reference Barst RJ, Gibbs JS, Ghofrani HA, Hoeper MM, McLaughlin VV, Rubin LJ, Sitbon O, Tapson VF, Galie N (2009) Updated evidence-based treatment algorithm in pulmonary arterial hypertension. J Am Coll Cardiol 54:S78–S84PubMedCrossRef Barst RJ, Gibbs JS, Ghofrani HA, Hoeper MM, McLaughlin VV, Rubin LJ, Sitbon O, Tapson VF, Galie N (2009) Updated evidence-based treatment algorithm in pulmonary arterial hypertension. J Am Coll Cardiol 54:S78–S84PubMedCrossRef
4.
go back to reference Westphal M, Morelli A, Van AH (2007) Dear levosimendan, the right ventricle will thank you! Crit Care Med 35:952–953PubMedCrossRef Westphal M, Morelli A, Van AH (2007) Dear levosimendan, the right ventricle will thank you! Crit Care Med 35:952–953PubMedCrossRef
5.
go back to reference Sorsa T, Pollesello P, Rosevear PR, Drakenberg T, Kilpelainen I (2004) Stereoselective binding of levosimendan to cardiac troponin C causes Ca2+-sensitization. Eur J Pharmacol 486:1–8PubMedCrossRef Sorsa T, Pollesello P, Rosevear PR, Drakenberg T, Kilpelainen I (2004) Stereoselective binding of levosimendan to cardiac troponin C causes Ca2+-sensitization. Eur J Pharmacol 486:1–8PubMedCrossRef
6.
go back to reference Bowman P, Haikala H, Paul RJ (1999) Levosimendan, a calcium sensitizer in cardiac muscle, induces relaxation in coronary smooth muscle through calcium desensitization. J Pharmacol Exp Ther 288:316–325PubMed Bowman P, Haikala H, Paul RJ (1999) Levosimendan, a calcium sensitizer in cardiac muscle, induces relaxation in coronary smooth muscle through calcium desensitization. J Pharmacol Exp Ther 288:316–325PubMed
7.
go back to reference Pataricza J, Krassoi I, Hohn J, Kun A, Papp JG (2003) Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther 17:115–121PubMedCrossRef Pataricza J, Krassoi I, Hohn J, Kun A, Papp JG (2003) Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther 17:115–121PubMedCrossRef
8.
go back to reference Yokoshiki H, Sperelakis N (2003) Vasodilating mechanisms of levosimendan. Cardiovasc Drugs Ther 17:111–113PubMedCrossRef Yokoshiki H, Sperelakis N (2003) Vasodilating mechanisms of levosimendan. Cardiovasc Drugs Ther 17:111–113PubMedCrossRef
9.
go back to reference Kota B, Prasad AS, Economides C, Singh BN (2008) Levosimendan and calcium sensitization of the contractile proteins in cardiac muscle: impact on heart failure. J Cardiovasc Pharmacol Ther 13:269–278PubMedCrossRef Kota B, Prasad AS, Economides C, Singh BN (2008) Levosimendan and calcium sensitization of the contractile proteins in cardiac muscle: impact on heart failure. J Cardiovasc Pharmacol Ther 13:269–278PubMedCrossRef
10.
go back to reference De Witt BJ, Ibrahim IN, Bayer E, Fields AM, Richards TA, Banister RE, Kaye AD (2002) An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. Anesth Analg 94:1427–1433 (table)PubMed De Witt BJ, Ibrahim IN, Bayer E, Fields AM, Richards TA, Banister RE, Kaye AD (2002) An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. Anesth Analg 94:1427–1433 (table)PubMed
11.
go back to reference Bergh CH, Andersson B, Dahlstrom U, Forfang K, Kivikko M, Sarapohja T, Ullman B, Wikstrom G (2010) Intravenous levosimendan vs. dobutamine in acute decompensated heart failure patients on beta-blockers. Eur J Heart Fail 12:404–410PubMedCrossRef Bergh CH, Andersson B, Dahlstrom U, Forfang K, Kivikko M, Sarapohja T, Ullman B, Wikstrom G (2010) Intravenous levosimendan vs. dobutamine in acute decompensated heart failure patients on beta-blockers. Eur J Heart Fail 12:404–410PubMedCrossRef
12.
go back to reference Blackiston DJ, McLaughlin KA, Levin M (2009) Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3519–3528PubMedCrossRef Blackiston DJ, McLaughlin KA, Levin M (2009) Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3519–3528PubMedCrossRef
13.
go back to reference Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157PubMedCrossRef Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157PubMedCrossRef
14.
go back to reference Cook SJ, Lockyer PJ (2006) Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. Cell Calcium 39:101–112PubMedCrossRef Cook SJ, Lockyer PJ (2006) Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. Cell Calcium 39:101–112PubMedCrossRef
15.
go back to reference Di A, Malik AB (2010) TRP channels and the control of vascular function. Curr Opin Pharmacol 10:127–132PubMedCrossRef Di A, Malik AB (2010) TRP channels and the control of vascular function. Curr Opin Pharmacol 10:127–132PubMedCrossRef
16.
go back to reference Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12PubMed Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12PubMed
17.
go back to reference Sakao S, Tatsumi K, Voelkel NF (2009) Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 10:95PubMedCrossRef Sakao S, Tatsumi K, Voelkel NF (2009) Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 10:95PubMedCrossRef
18.
go back to reference Jones PL, Rabinovitch M (1996) Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. Circ Res 79:1131–1142PubMed Jones PL, Rabinovitch M (1996) Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. Circ Res 79:1131–1142PubMed
19.
go back to reference Schermuly RT, Kreisselmeier KP, Ghofrani HA, Samidurai A, Pullamsetti S, Weissmann N, Schudt C, Ermert L, Seeger W, Grimminger F (2004) Antiremodeling effects of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in chronic experimental pulmonary hypertension. Circ Res 94:1101–1108PubMedCrossRef Schermuly RT, Kreisselmeier KP, Ghofrani HA, Samidurai A, Pullamsetti S, Weissmann N, Schudt C, Ermert L, Seeger W, Grimminger F (2004) Antiremodeling effects of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in chronic experimental pulmonary hypertension. Circ Res 94:1101–1108PubMedCrossRef
20.
go back to reference Revermann M, Barbosa-Sicard E, Dony E, Schermuly RT, Morisseau C, Geisslinger G, Fleming I, Hammock BD, Brandes RP (2009) Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. J Hypertens 27:322–331PubMedCrossRef Revermann M, Barbosa-Sicard E, Dony E, Schermuly RT, Morisseau C, Geisslinger G, Fleming I, Hammock BD, Brandes RP (2009) Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. J Hypertens 27:322–331PubMedCrossRef
21.
go back to reference Schroder K, Kohnen A, Aicher A, Liehn EA, Buchse T, Stein S, Weber C, Dimmeler S, Brandes RP (2009) NADPH oxidase Nox2 is required for hypoxia-induced mobilization of endothelial progenitor cells. Circ Res 105:537–544PubMedCrossRef Schroder K, Kohnen A, Aicher A, Liehn EA, Buchse T, Stein S, Weber C, Dimmeler S, Brandes RP (2009) NADPH oxidase Nox2 is required for hypoxia-induced mobilization of endothelial progenitor cells. Circ Res 105:537–544PubMedCrossRef
22.
go back to reference Wiemer G, Scholkens BA, Becker RH, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18:558–563PubMed Wiemer G, Scholkens BA, Becker RH, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18:558–563PubMed
23.
go back to reference Fisslthaler B, Loot AE, Mohamed A, Busse R, Fleming I (2008) Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin. Circ Res 102:1520–1528PubMedCrossRef Fisslthaler B, Loot AE, Mohamed A, Busse R, Fleming I (2008) Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin. Circ Res 102:1520–1528PubMedCrossRef
24.
go back to reference Hongo M, Mawatari E, Sakai A, Ruan Z, Koizumi T, Terasawa F, Yazaki Y, Kinoshita O, Ikeda U, Shibamoto T (2005) Effects of nicorandil on monocrotaline-induced pulmonary arterial hypertension in rats. J Cardiovasc Pharmacol 46:452–458PubMedCrossRef Hongo M, Mawatari E, Sakai A, Ruan Z, Koizumi T, Terasawa F, Yazaki Y, Kinoshita O, Ikeda U, Shibamoto T (2005) Effects of nicorandil on monocrotaline-induced pulmonary arterial hypertension in rats. J Cardiovasc Pharmacol 46:452–458PubMedCrossRef
25.
go back to reference Taira N (1989) Nicorandil as a hybrid between nitrates and potassium channel activators. Am J Cardiol 63:18J–24JPubMedCrossRef Taira N (1989) Nicorandil as a hybrid between nitrates and potassium channel activators. Am J Cardiol 63:18J–24JPubMedCrossRef
26.
go back to reference Minamiyama Y, Takemura S, Hai S, Suehiro S, Okada S, Funae Y (2007) Nicorandil elevates tissue cGMP levels in a nitric-oxide-independent manner. J Pharmacol Sci 103:33–39PubMedCrossRef Minamiyama Y, Takemura S, Hai S, Suehiro S, Okada S, Funae Y (2007) Nicorandil elevates tissue cGMP levels in a nitric-oxide-independent manner. J Pharmacol Sci 103:33–39PubMedCrossRef
27.
go back to reference Kuno A, Critz SD, Cohen MV, Downey JM (2007) Nicorandil opens mitochondrial K(ATP) channels not only directly but also through a NO-PKG-dependent pathway. Basic Res Cardiol 102:73–79PubMedCrossRef Kuno A, Critz SD, Cohen MV, Downey JM (2007) Nicorandil opens mitochondrial K(ATP) channels not only directly but also through a NO-PKG-dependent pathway. Basic Res Cardiol 102:73–79PubMedCrossRef
28.
go back to reference Ogawa N, Saito M, Mori A, Sakamoto K, Kametaka S, Nakahara T, Ishii K (2007) Vasodilator effect of nicorandil on retinal blood vessels in rats. Naunyn Schmiedebergs Arch Pharmacol 375:323–328PubMedCrossRef Ogawa N, Saito M, Mori A, Sakamoto K, Kametaka S, Nakahara T, Ishii K (2007) Vasodilator effect of nicorandil on retinal blood vessels in rats. Naunyn Schmiedebergs Arch Pharmacol 375:323–328PubMedCrossRef
29.
go back to reference Yildiz O (2007) Vasodilating mechanisms of levosimendan: involvement of K+ channels. J Pharmacol Sci 104:1–5PubMedCrossRef Yildiz O (2007) Vasodilating mechanisms of levosimendan: involvement of K+ channels. J Pharmacol Sci 104:1–5PubMedCrossRef
30.
go back to reference Kersten JR, Montgomery MW, Pagel PS, Warltier DC (2000) Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of K(ATP) channels. Anesth Analg 90:5–11PubMedCrossRef Kersten JR, Montgomery MW, Pagel PS, Warltier DC (2000) Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of K(ATP) channels. Anesth Analg 90:5–11PubMedCrossRef
31.
go back to reference Kaheinen P, Pollesello P, Levijoki J, Haikala H (2001) Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 37:367–374PubMedCrossRef Kaheinen P, Pollesello P, Levijoki J, Haikala H (2001) Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 37:367–374PubMedCrossRef
32.
go back to reference Akar F, Manavbasi Y, Parlar AI, Ulus AT, Katircioglu SF (2007) The gender differences in the relaxation to levosimendan of human internal mammary artery. Cardiovasc Drugs Ther 21:331–338PubMedCrossRef Akar F, Manavbasi Y, Parlar AI, Ulus AT, Katircioglu SF (2007) The gender differences in the relaxation to levosimendan of human internal mammary artery. Cardiovasc Drugs Ther 21:331–338PubMedCrossRef
33.
go back to reference Shah RR (2010) Drug-induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives. Br J Pharmacol 159:58–69PubMedCrossRef Shah RR (2010) Drug-induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives. Br J Pharmacol 159:58–69PubMedCrossRef
34.
go back to reference Copple BL, Rondelli CM, Maddox JF, Hoglen NC, Ganey PE, Roth RA (2004) Modes of cell death in rat liver after monocrotaline exposure. Toxicol Sci 77:172–182PubMedCrossRef Copple BL, Rondelli CM, Maddox JF, Hoglen NC, Ganey PE, Roth RA (2004) Modes of cell death in rat liver after monocrotaline exposure. Toxicol Sci 77:172–182PubMedCrossRef
35.
go back to reference Kopustinskiene DM, Pollesello P, Saris NE (2001) Levosimendan is a mitochondrial K(ATP) channel opener. Eur J Pharmacol 428:311–314PubMedCrossRef Kopustinskiene DM, Pollesello P, Saris NE (2001) Levosimendan is a mitochondrial K(ATP) channel opener. Eur J Pharmacol 428:311–314PubMedCrossRef
36.
go back to reference Sareila O, Korhonen R, Auvinen H, Hamalainen M, Kankaanranta H, Nissinen E, Moilanen E (2008) Effects of levo- and dextrosimendan on NF-kappaB-mediated transcription, iNOS expression and NO production in response to inflammatory stimuli. Br J Pharmacol 155:884–895PubMedCrossRef Sareila O, Korhonen R, Auvinen H, Hamalainen M, Kankaanranta H, Nissinen E, Moilanen E (2008) Effects of levo- and dextrosimendan on NF-kappaB-mediated transcription, iNOS expression and NO production in response to inflammatory stimuli. Br J Pharmacol 155:884–895PubMedCrossRef
37.
go back to reference van Empel VP, De Windt LJ (2004) Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res 63:487–499PubMedCrossRef van Empel VP, De Windt LJ (2004) Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res 63:487–499PubMedCrossRef
38.
go back to reference Landmesser U, Wollert KC, Drexler H (2009) Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 81:519–527PubMedCrossRef Landmesser U, Wollert KC, Drexler H (2009) Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 81:519–527PubMedCrossRef
39.
go back to reference Perros F, Dorfmuller P, Souza R, Durand-Gasselin I, Godot V, Capel F, Adnot S, Eddahibi S, Mazmanian M, Fadel E, Herve P, Simonneau G, Emilie D, Humbert M (2007) Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J 29:937–943PubMedCrossRef Perros F, Dorfmuller P, Souza R, Durand-Gasselin I, Godot V, Capel F, Adnot S, Eddahibi S, Mazmanian M, Fadel E, Herve P, Simonneau G, Emilie D, Humbert M (2007) Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J 29:937–943PubMedCrossRef
40.
go back to reference Okawa-Takatsuji M, Aotsuka S, Fujinami M, Uwatoko S, Kinoshita M, Sumiya M (1999) Up-regulation of intercellular adhesion molecule-1 (ICAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1) and class II MHC molecules on pulmonary artery endothelial cells by antibodies against U1-ribonucleoprotein. Clin Exp Immunol 116:174–180PubMedCrossRef Okawa-Takatsuji M, Aotsuka S, Fujinami M, Uwatoko S, Kinoshita M, Sumiya M (1999) Up-regulation of intercellular adhesion molecule-1 (ICAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1) and class II MHC molecules on pulmonary artery endothelial cells by antibodies against U1-ribonucleoprotein. Clin Exp Immunol 116:174–180PubMedCrossRef
41.
go back to reference Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S (2007) Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 176:1041–1047PubMedCrossRef Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S (2007) Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 176:1041–1047PubMedCrossRef
42.
go back to reference Ikeda Y, Yonemitsu Y, Kataoka C, Kitamoto S, Yamaoka T, Nishida K, Takeshita A, Egashira K, Sueishi K (2002) Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol 283:H2021–H2028PubMed Ikeda Y, Yonemitsu Y, Kataoka C, Kitamoto S, Yamaoka T, Nishida K, Takeshita A, Egashira K, Sueishi K (2002) Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol 283:H2021–H2028PubMed
43.
go back to reference Rakotoniaina Z, Guerard P, Lirussi F, Rochette L, Dumas M, Goirand F, Bardou M (2008) Celecoxib but not the combination of celecoxib + atorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat. Naunyn Schmiedebergs Arch Pharmacol 378:241–251PubMedCrossRef Rakotoniaina Z, Guerard P, Lirussi F, Rochette L, Dumas M, Goirand F, Bardou M (2008) Celecoxib but not the combination of celecoxib + atorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat. Naunyn Schmiedebergs Arch Pharmacol 378:241–251PubMedCrossRef
44.
go back to reference Reinhart K, Bayer O, Brunkhorst F, Meisner M (2002) Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 30:S302–S312PubMedCrossRef Reinhart K, Bayer O, Brunkhorst F, Meisner M (2002) Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 30:S302–S312PubMedCrossRef
45.
go back to reference Scheiermann P, Ahluwalia D, Hoegl S, Dolfen A, Revermann M, Zwissler B, Muhl H, Boost KA, Hofstetter C (2009) Effects of intravenous and inhaled levosimendan in severe rodent sepsis. Intensive Care Med 35:1412–1419PubMedCrossRef Scheiermann P, Ahluwalia D, Hoegl S, Dolfen A, Revermann M, Zwissler B, Muhl H, Boost KA, Hofstetter C (2009) Effects of intravenous and inhaled levosimendan in severe rodent sepsis. Intensive Care Med 35:1412–1419PubMedCrossRef
46.
go back to reference Boost KA, Hoegl S, Dolfen A, Czerwonka H, Scheiermann P, Zwissler B, Hofstetter C (2008) Inhaled levosimendan reduces mortality and release of proinflammatory mediators in a rat model of experimental ventilator-induced lung injury. Crit Care Med 36:1873–1879PubMedCrossRef Boost KA, Hoegl S, Dolfen A, Czerwonka H, Scheiermann P, Zwissler B, Hofstetter C (2008) Inhaled levosimendan reduces mortality and release of proinflammatory mediators in a rat model of experimental ventilator-induced lung injury. Crit Care Med 36:1873–1879PubMedCrossRef
47.
go back to reference Trikas A, Antoniades C, Latsios G, Vasiliadou K, Karamitros I, Tousoulis D, Tentolouris C, Stefanadis C (2006) Long-term effects of levosimendan infusion on inflammatory processes and sFas in patients with severe heart failure. Eur J Heart Fail 8:804–809PubMedCrossRef Trikas A, Antoniades C, Latsios G, Vasiliadou K, Karamitros I, Tousoulis D, Tentolouris C, Stefanadis C (2006) Long-term effects of levosimendan infusion on inflammatory processes and sFas in patients with severe heart failure. Eur J Heart Fail 8:804–809PubMedCrossRef
48.
go back to reference Liu X, Wu JY, Zhou F, Sun XL, Yao HH, Yang Y, Ding JH, Hu G (2006) The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neurosci Lett 394:131–135PubMedCrossRef Liu X, Wu JY, Zhou F, Sun XL, Yao HH, Yang Y, Ding JH, Hu G (2006) The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neurosci Lett 394:131–135PubMedCrossRef
49.
go back to reference De CR, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68CrossRef De CR, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68CrossRef
Metadata
Title
Levosimendan attenuates pulmonary vascular remodeling
Authors
M. Revermann
M. Schloss
A. Mieth
A. Babelova
K. Schröder
S. Neofitidou
J. Buerkl
T. Kirschning
R. T. Schermuly
C. Hofstetter
R. P. Brandes
Publication date
01-08-2011
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 8/2011
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-011-2254-9

Other articles of this Issue 8/2011

Intensive Care Medicine 8/2011 Go to the issue