Skip to main content
Top
Published in: Intensive Care Medicine 4/2007

01-04-2007 | Experimental

Alveolar edema dispersion and alveolar protein permeability during high volume ventilation: effect of positive end-expiratory pressure

Authors: Nicolas de Prost, Damien Roux, Didier Dreyfuss, Jean-Damien Ricard, Dominique Le Guludec, Georges Saumon

Published in: Intensive Care Medicine | Issue 4/2007

Login to get access

Abstract

Objectives

To evaluate whether PEEP affects intrapulmonary alveolar edema liquid movement and alveolar permeability to proteins during high volume ventilation.

Design and setting

Experimental study in an animal research laboratory.

Subjects

46 male Wistar rats.

Interventions

99mTc-labeled albumin solution was instilled in a distal airway to produce a zone of alveolar flooding. Conventional ventilation (CV) was applied for 30 min followed by various ventilation strategies for 3 h: CV, spontaneous breathing, and high volume ventilation with different PEEP levels (0, 6, and 8 cmH2O) and different tidal volumes. Dispersion of the instilled liquid and systemic leakage of 99mTc-albumin from the lungs were studied by scintigraphy.

Measurements and results

The instillation protocol produced a zone of alveolar flooding that stayed localized during CV or spontaneous breathing. High volume ventilation dispersed alveolar liquid in the lungs. This dispersion was prevented by PEEP even when tidal volume was the same and thus end-inspiratory pressure higher. High volume ventilation resulted in the leakage of instilled 99mTc-albumin from the lungs. This increase in alveolar albumin permeability was reduced by PEEP. Albumin permeability was more affected by the amplitude of tidal excursions than by overall lung distension.

Conclusions

PEEP prevents the dispersion of alveolar edema liquid in the lungs and lessens the increase in alveolar albumin permeability due to high volume ventilation.
Literature
1.
go back to reference Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMed Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMed
2.
go back to reference Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRef Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRef
3.
go back to reference Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMed Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMed
4.
go back to reference Schortgen F, Bouadma L, Joly-Guillou ML, Ricard JD, Dreyfuss D, Saumon G (2004) Infectious and inflammatory dissemination are affected by ventilation strategy in rats with unilateral pneumonia. Intensive Care Med 30:693–701PubMedCrossRef Schortgen F, Bouadma L, Joly-Guillou ML, Ricard JD, Dreyfuss D, Saumon G (2004) Infectious and inflammatory dissemination are affected by ventilation strategy in rats with unilateral pneumonia. Intensive Care Med 30:693–701PubMedCrossRef
5.
go back to reference Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 25:1733–1743PubMedCrossRef Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 25:1733–1743PubMedCrossRef
6.
go back to reference Murphy DB, Cregg N, Tremblay L, Engelberts D, Laffey JG, Slutsky AS, Romaschin A, Kavanagh BP (2000) Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med 162:27–33PubMed Murphy DB, Cregg N, Tremblay L, Engelberts D, Laffey JG, Slutsky AS, Romaschin A, Kavanagh BP (2000) Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med 162:27–33PubMed
7.
go back to reference Prost N de, Dreyfuss D, Saumon G (2007) Evaluation of two-way protein fluxes across the alveolo-capillary membrane by scintigraphy in rats: effect of lung inflation. J Appl Physiol 102:794–802CrossRef Prost N de, Dreyfuss D, Saumon G (2007) Evaluation of two-way protein fluxes across the alveolo-capillary membrane by scintigraphy in rats: effect of lung inflation. J Appl Physiol 102:794–802CrossRef
8.
go back to reference Dekker BG, Arts CJ, De Ligny CL (1982) Gel-chromatographic analysis of 99mTc-labeled human serum albumin prepared with Sn (II) as the reductant. Int J Appl Radiat Isot 33:1351–1357PubMedCrossRef Dekker BG, Arts CJ, De Ligny CL (1982) Gel-chromatographic analysis of 99mTc-labeled human serum albumin prepared with Sn (II) as the reductant. Int J Appl Radiat Isot 33:1351–1357PubMedCrossRef
9.
go back to reference Fisarkova B, Vizek M (2003) Hyperoxia prevents carrageenan-induced enlargement of functional residual lung capacity in rats. Physiol Res 52:763–766PubMed Fisarkova B, Vizek M (2003) Hyperoxia prevents carrageenan-induced enlargement of functional residual lung capacity in rats. Physiol Res 52:763–766PubMed
10.
go back to reference Cohen DS, Matthay MA, Cogan MG, Murray JF (1992) Pulmonary edema associated with salt water near-drowning: new insights. Am Rev Respir Dis 146:794–796PubMed Cohen DS, Matthay MA, Cogan MG, Murray JF (1992) Pulmonary edema associated with salt water near-drowning: new insights. Am Rev Respir Dis 146:794–796PubMed
11.
go back to reference Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784PubMedCrossRef Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784PubMedCrossRef
12.
go back to reference Ogawa EN, Ishizaka A, Tasaka S, Koh H, Ueno H, Amaya F, Ebina M, Yamada S, Funakoshi Y, Soejima J, Moriyama K, Kotani T, Hashimoto S, Morisaki H, Abraham E, Takeda J (2006) Contribution of High-Mobility Group Box-1 to the Development of Ventilator-induced Lung Injury. Am J Respir Crit Care Med 174:400–407PubMedCrossRef Ogawa EN, Ishizaka A, Tasaka S, Koh H, Ueno H, Amaya F, Ebina M, Yamada S, Funakoshi Y, Soejima J, Moriyama K, Kotani T, Hashimoto S, Morisaki H, Abraham E, Takeda J (2006) Contribution of High-Mobility Group Box-1 to the Development of Ventilator-induced Lung Injury. Am J Respir Crit Care Med 174:400–407PubMedCrossRef
13.
go back to reference Frank JA, Pittet JF, Lee H, Godzich M, Matthay MA (2003) High tidal volume ventilation induces NOS2 and impairs cAMP-dependent air space fluid clearance. Am J Physiol Lung Cell Mol Physiol 284:L791–L798PubMed Frank JA, Pittet JF, Lee H, Godzich M, Matthay MA (2003) High tidal volume ventilation induces NOS2 and impairs cAMP-dependent air space fluid clearance. Am J Physiol Lung Cell Mol Physiol 284:L791–L798PubMed
14.
go back to reference Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA (2006) Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291:L1191–L1198PubMedCrossRef Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA (2006) Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291:L1191–L1198PubMedCrossRef
15.
go back to reference Wilson TA, Anafi RC, Hubmayr RD (2001) Mechanics of edematous lungs. J Appl Physiol 90:2088–2093PubMed Wilson TA, Anafi RC, Hubmayr RD (2001) Mechanics of edematous lungs. J Appl Physiol 90:2088–2093PubMed
16.
go back to reference Hastings RH, Folkesson HG, Matthay MA (2004) Mechanisms of alveolar protein clearance in the intact lung. Am J Physiol Lung Cell Mol Physiol 286:L679–L689PubMedCrossRef Hastings RH, Folkesson HG, Matthay MA (2004) Mechanisms of alveolar protein clearance in the intact lung. Am J Physiol Lung Cell Mol Physiol 286:L679–L689PubMedCrossRef
17.
go back to reference Berthiaume Y, Albertine KH, Grady M, Fick G, Matthay MA (1989) Protein clearance from the air spaces and lungs of unanesthetized sheep over 144 h. J Appl Physiol 67:1887–1897PubMed Berthiaume Y, Albertine KH, Grady M, Fick G, Matthay MA (1989) Protein clearance from the air spaces and lungs of unanesthetized sheep over 144 h. J Appl Physiol 67:1887–1897PubMed
18.
go back to reference Egan EA (1982) Lung inflation, lung solute permeability, and alveolar edema. J Appl Physiol 53:121–125PubMed Egan EA (1982) Lung inflation, lung solute permeability, and alveolar edema. J Appl Physiol 53:121–125PubMed
19.
go back to reference Cavanaugh KJ, Cohen TS, Margulies SS (2006) Stretch increases alveolar epithelial permeability to uncharged micromolecules. Am J Physiol Cell Physiol 290:C1179–C1188PubMedCrossRef Cavanaugh KJ, Cohen TS, Margulies SS (2006) Stretch increases alveolar epithelial permeability to uncharged micromolecules. Am J Physiol Cell Physiol 290:C1179–C1188PubMedCrossRef
20.
go back to reference Tschumperlin DJ, Oswari J, Margulies SS (2000) Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162:357–362PubMed Tschumperlin DJ, Oswari J, Margulies SS (2000) Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162:357–362PubMed
21.
go back to reference Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMed Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMed
22.
go back to reference Martynowicz MA, Walters BJ, Hubmayr RD (2001) Mechanisms of recruitment in oleic acid-injured lungs. J Appl Physiol 90:1744–1753PubMed Martynowicz MA, Walters BJ, Hubmayr RD (2001) Mechanisms of recruitment in oleic acid-injured lungs. J Appl Physiol 90:1744–1753PubMed
23.
go back to reference Bilek AM, Dee KC, Gaver DP 3rd (2003) Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol 94:770–783PubMedCrossRef Bilek AM, Dee KC, Gaver DP 3rd (2003) Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol 94:770–783PubMedCrossRef
24.
go back to reference Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRef Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRef
25.
go back to reference Peevy KJ, Hernandez LA, Moise AA, Parker JC (1990) Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern. Crit Care Med 18:634–637PubMedCrossRef Peevy KJ, Hernandez LA, Moise AA, Parker JC (1990) Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern. Crit Care Med 18:634–637PubMedCrossRef
26.
go back to reference Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1376–1383PubMed Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1376–1383PubMed
Metadata
Title
Alveolar edema dispersion and alveolar protein permeability during high volume ventilation: effect of positive end-expiratory pressure
Authors
Nicolas de Prost
Damien Roux
Didier Dreyfuss
Jean-Damien Ricard
Dominique Le Guludec
Georges Saumon
Publication date
01-04-2007
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 4/2007
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-007-0575-5

Other articles of this Issue 4/2007

Intensive Care Medicine 4/2007 Go to the issue