Skip to main content
Top
Published in: European Journal of Trauma and Emergency Surgery 6/2017

01-12-2017 | Original Article

Survival prediction of trauma patients: a study on US National Trauma Data Bank

Authors: I. Sefrioui, R. Amadini, J. Mauro, A. El Fallahi, M. Gabbrielli

Published in: European Journal of Trauma and Emergency Surgery | Issue 6/2017

Login to get access

Abstract

Background

Exceptional circumstances like major incidents or natural disasters may cause a huge number of victims that might not be immediately and simultaneously saved. In these cases it is important to define priorities avoiding to waste time and resources for not savable victims. Trauma and Injury Severity Score (TRISS) methodology is the well-known and standard system usually used by practitioners to predict the survival probability of trauma patients. However, practitioners have noted that the accuracy of TRISS predictions is unacceptable especially for severely injured patients. Thus, alternative methods should be proposed.

Methods

In this work we evaluate different approaches for predicting whether a patient will survive or not according to simple and easily measurable observations. We conducted a rigorous, comparative study based on the most important prediction techniques using real clinical data of the US National Trauma Data Bank.

Results

Empirical results show that well-known Machine Learning classifiers can outperform the TRISS methodology. Based on our findings, we can say that the best approach we evaluated is Random Forest: it has the best accuracy, the best area under the curve, and k-statistic, as well as the second-best sensitivity and specificity. It has also a good calibration curve. Furthermore, its performance monotonically increases as the dataset size grows, meaning that it can be very effective to exploit incoming knowledge. Considering the whole dataset, it is always better than TRISS. Finally, we implemented a new tool to compute the survival of victims. This will help medical practitioners to obtain a better accuracy than the TRISS tools.

Conclusion

Random Forests may be a good candidate solution for improving the predictions on survival upon the standard TRISS methodology.
Footnotes
2
In our case the learning rate was set to 0.3, the momentum to 0.2, the number of iterations to 500, and the hidden layer was composed of 9 nodes.
 
3
We used the 3.7.12 version of WEKA.
 
4
In WEKA this can be done with the “-M” option of the SMO classifier.
 
Literature
1.
4.
go back to reference van Camp LA, Delooz H. Current trauma scoring systems and their applications: a review. In: Trauma operative procedures. Topics in anaesthesia and critical care. Berlin: Springer; 1999. p. 9–29. van Camp LA, Delooz H. Current trauma scoring systems and their applications: a review. In: Trauma operative procedures. Topics in anaesthesia and critical care. Berlin: Springer; 1999. p. 9–29.
5.
go back to reference Wolfgang FD. Research and uniform reporting. In: Soreide E, Grande CM, editors. Prehospital trauma Care. Boca Raton: CRC Press; 2001. p. 131–152. Wolfgang FD. Research and uniform reporting. In: Soreide E, Grande CM, editors. Prehospital trauma Care. Boca Raton: CRC Press; 2001. p. 131–152.
6.
go back to reference Sasser S, Varghese M, Kellermann A, Lormand J. Prehospital trauma care systems. World Health Organization; 2005. Sasser S, Varghese M, Kellermann A, Lormand J. Prehospital trauma care systems. World Health Organization; 2005.
7.
go back to reference Linn S, Knoller N, Giligan CG, Dreifus U. The sky is a limit: errors in prehospital diagnosis by flight physicians. Am J Emerg Med. 1997;15(3):316–20.CrossRefPubMed Linn S, Knoller N, Giligan CG, Dreifus U. The sky is a limit: errors in prehospital diagnosis by flight physicians. Am J Emerg Med. 1997;15(3):316–20.CrossRefPubMed
8.
go back to reference Regel G, Seekamp A, Pohlemann T, Schmidt U, Bauer H, Tscherne H. Does the accident patient need to be protected from the emergency doctor? Der Unfallchirurg. 1998;101(3):160–75.CrossRefPubMed Regel G, Seekamp A, Pohlemann T, Schmidt U, Bauer H, Tscherne H. Does the accident patient need to be protected from the emergency doctor? Der Unfallchirurg. 1998;101(3):160–75.CrossRefPubMed
9.
go back to reference Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. J Trauma. 1987;27(4):370–8. Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. J Trauma. 1987;27(4):370–8.
13.
go back to reference Kilgo P, Meredith J, Osler T. Incorporating recent advances to make the TRISS approach universally available. J Trauma. 2006;60(5):1002–9. Kilgo P, Meredith J, Osler T. Incorporating recent advances to make the TRISS approach universally available. J Trauma. 2006;60(5):1002–9.
15.
go back to reference Schetinin V, Jakaite L, Jakaitis J, Krzanowski WJ. Bayesian decision trees for predicting survival of patients: a study on the US National Trauma Data Bank. Comput Methods Progr Biomed. 2013;111(3):602–12.CrossRef Schetinin V, Jakaite L, Jakaitis J, Krzanowski WJ. Bayesian decision trees for predicting survival of patients: a study on the US National Trauma Data Bank. Comput Methods Progr Biomed. 2013;111(3):602–12.CrossRef
16.
go back to reference Rughani AI, Dumont TM, Lu Z, Bongard J, Horgan MA, Penar PL, et al. Use of an artificial neural network to predict head injury outcome. J Neurosurg. 2010;113(3):585–90.CrossRefPubMed Rughani AI, Dumont TM, Lu Z, Bongard J, Horgan MA, Penar PL, et al. Use of an artificial neural network to predict head injury outcome. J Neurosurg. 2010;113(3):585–90.CrossRefPubMed
17.
go back to reference Mitchell TM. Machine learning. McGraw Hill series in computer science. Maidenheach: McGraw-Hill; 1997. Mitchell TM. Machine learning. McGraw Hill series in computer science. Maidenheach: McGraw-Hill; 1997.
18.
go back to reference Haykin S. Neural networks: a comprehensive foundation. 2nd ed. Upper Saddle River: Prentice Hall PTR; 1998. Haykin S. Neural networks: a comprehensive foundation. 2nd ed. Upper Saddle River: Prentice Hall PTR; 1998.
19.
go back to reference Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. Massachusetts: MIT Press; 1986. pp. 318–362. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. Massachusetts: MIT Press; 1986. pp. 318–362.
20.
go back to reference Quinlan R. C4.5: Programs for machine learning. San Francisco: Morgan Kaufmann Publishers; 1993. Quinlan R. C4.5: Programs for machine learning. San Francisco: Morgan Kaufmann Publishers; 1993.
21.
go back to reference Frank E, Witten IH. Generating accurate rule sets without global optimization. In: ML. San Francisco: Morgan Kaufmann; 1998. pp. 144–151. Frank E, Witten IH. Generating accurate rule sets without global optimization. In: ML. San Francisco: Morgan Kaufmann; 1998. pp. 144–151.
22.
go back to reference Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.
23.
go back to reference le Cessie S, van Houwelingen JC. Ridge estimators in logistic regression. Appl Stat. 1992;41(1):191–201.CrossRef le Cessie S, van Houwelingen JC. Ridge estimators in logistic regression. Appl Stat. 1992;41(1):191–201.CrossRef
24.
go back to reference Kologlu M, Elker D, Altun H, Sayek I. Validation of MPI and PIA II in two different groups of patients with secondary peritonitis. Hepato-gastroenterology. 2000;48(37):147–51. Kologlu M, Elker D, Altun H, Sayek I. Validation of MPI and PIA II in two different groups of patients with secondary peritonitis. Hepato-gastroenterology. 2000;48(37):147–51.
25.
go back to reference Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23(10):1638–52.CrossRefPubMed Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23(10):1638–52.CrossRefPubMed
26.
go back to reference Biondo S, Ramos E, Deiros M, Ragué JM, De Oca J, Moreno P, et al. Prognostic factors for mortality in left colonic peritonitis: a new scoring system. J Am Coll Surg. 2000;191(6):635–42.CrossRefPubMed Biondo S, Ramos E, Deiros M, Ragué JM, De Oca J, Moreno P, et al. Prognostic factors for mortality in left colonic peritonitis: a new scoring system. J Am Coll Surg. 2000;191(6):635–42.CrossRefPubMed
27.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.CrossRefPubMed Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.CrossRefPubMed
28.
go back to reference John GH, Langley P. Estimating continuous distributions in bayesian classifiers. In: UAI. San Francisco: Morgan Kaufmann; 1995. pp. 338–345. John GH, Langley P. Estimating continuous distributions in bayesian classifiers. In: UAI. San Francisco: Morgan Kaufmann; 1995. pp. 338–345.
29.
go back to reference Platt J. Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods—support vector learning. Cambridge: MIT Press; 1998. Platt J. Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods—support vector learning. Cambridge: MIT Press; 1998.
30.
go back to reference Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 2001;13(3):637–49.CrossRef Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 2001;13(3):637–49.CrossRef
31.
go back to reference Hastie T, Tibshirani R. Classification by pairwise coupling. In: NIPS. vol. 10. Cambridge: MIT Press; 1998. pp. 507–513. Hastie T, Tibshirani R. Classification by pairwise coupling. In: NIPS. vol. 10. Cambridge: MIT Press; 1998. pp. 507–513.
32.
go back to reference Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, et al. Top 10 algorithms in data mining. Knowl Inf Syst. 2008;14(1):1–37.CrossRef Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, et al. Top 10 algorithms in data mining. Knowl Inf Syst. 2008;14(1):1–37.CrossRef
33.
go back to reference Entezari-Maleki R, Rezaei A, Minaei-Bidgoli B. Comparison of classification methods based on the type of attributes and sample size. JCIT. 2009;4(3):94–102.CrossRef Entezari-Maleki R, Rezaei A, Minaei-Bidgoli B. Comparison of classification methods based on the type of attributes and sample size. JCIT. 2009;4(3):94–102.CrossRef
36.
go back to reference Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.CrossRef Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.CrossRef
37.
go back to reference Fawcett T. ROC graphs: notes and practical considerations for researchers. Palo Alto: HP Laboratories; 2004. Fawcett T. ROC graphs: notes and practical considerations for researchers. Palo Alto: HP Laboratories; 2004.
38.
go back to reference Carletta J. Assessing agreement on classification tasks: the kappa statistic. Comput Linguist. 1996;22(2):249–54. Carletta J. Assessing agreement on classification tasks: the kappa statistic. Comput Linguist. 1996;22(2):249–54.
39.
go back to reference Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. SIGKDD Explor. Newsl. 2009;11(1):10–8. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. SIGKDD Explor. Newsl. 2009;11(1):10–8.
40.
go back to reference Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–107. Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–107.
41.
go back to reference Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in large margin classifiers. Cambridge: MIT Press; 1999. pp. 61–74. Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in large margin classifiers. Cambridge: MIT Press; 1999. pp. 61–74.
45.
go back to reference Zhu X, Davidson I. Knowledge discovery and data mining: challenges and realities. Hershey: IGI Global; 2007.CrossRef Zhu X, Davidson I. Knowledge discovery and data mining: challenges and realities. Hershey: IGI Global; 2007.CrossRef
46.
go back to reference Palmer C. Major trauma and the injury severity score—where should we set the bar? Ann Adv Automot Med. 2007;19:13–29. Palmer C. Major trauma and the injury severity score—where should we set the bar? Ann Adv Automot Med. 2007;19:13–29.
48.
go back to reference Hunter A, Kennedy L, Henry J, Ferguson I. Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput Methods Programs Biomed. 2000;62(1):11–9.CrossRefPubMed Hunter A, Kennedy L, Henry J, Ferguson I. Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput Methods Programs Biomed. 2000;62(1):11–9.CrossRefPubMed
49.
go back to reference Silva A, Cortez P, Santos MF, Gomes L, Neves J. Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med. 2006;36(3):223–34.CrossRefPubMed Silva A, Cortez P, Santos MF, Gomes L, Neves J. Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med. 2006;36(3):223–34.CrossRefPubMed
50.
go back to reference Dc S, As S. A data mining approach for prediction of heart disease using neural networks. IJCET. 2012;3(3):30–40. Dc S, As S. A data mining approach for prediction of heart disease using neural networks. IJCET. 2012;3(3):30–40.
51.
go back to reference Larson J, Newman F. An implementation of scatter search to train neural networks for brain lesion recognition. J Math. 2011;4(3):203–11. Larson J, Newman F. An implementation of scatter search to train neural networks for brain lesion recognition. J Math. 2011;4(3):203–11.
52.
go back to reference Kim S, Kim W, Park RW. A comparison of intensive care unit mortality prediction models through the use of data mining techniques. Healthc Inform Res. 2015;17(4):232–43.CrossRef Kim S, Kim W, Park RW. A comparison of intensive care unit mortality prediction models through the use of data mining techniques. Healthc Inform Res. 2015;17(4):232–43.CrossRef
54.
go back to reference Michelle S, Hari R, Bryan C, Dua A, Del Junco D, Wade C, et al. Prehospital triage of trauma patients using the random forest computer algorithm. J Surg Res. 2013;187:371–6. Michelle S, Hari R, Bryan C, Dua A, Del Junco D, Wade C, et al. Prehospital triage of trauma patients using the random forest computer algorithm. J Surg Res. 2013;187:371–6.
55.
go back to reference Patil BM, Joshi RC, Toshniwal D, Biradar S. A new approach: role of data mining in prediction of survival of burn patients. J Med Syst. 2011;35(6):1531–42.CrossRefPubMed Patil BM, Joshi RC, Toshniwal D, Biradar S. A new approach: role of data mining in prediction of survival of burn patients. J Med Syst. 2011;35(6):1531–42.CrossRefPubMed
56.
go back to reference Lefering R, Huber-Wagner S, Nienaber U, Maegele M, Bouillon B. Update of the trauma risk adjustment model of the trauma register DGU\(^{\rm TM}\): the revised injury severity classification, version II. Crit Care. 2014;18(5):476. doi:10.1186/s13054-014-0476-2. Lefering R, Huber-Wagner S, Nienaber U, Maegele M, Bouillon B. Update of the trauma risk adjustment model of the trauma register DGU\(^{\rm TM}\): the revised injury severity classification, version II. Crit Care. 2014;18(5):476. doi:10.​1186/​s13054-014-0476-2.
57.
go back to reference Restrepo-Álvarez CA, Valderrama-Molina CO, Giraldo-Ramírez N, Constain-Franco A, Puerta A, León AL, et al. Trauma severity scores. Colombian. J Anesthesiol. 2016;44(4):317–23. Restrepo-Álvarez CA, Valderrama-Molina CO, Giraldo-Ramírez N, Constain-Franco A, Puerta A, León AL, et al. Trauma severity scores. Colombian. J Anesthesiol. 2016;44(4):317–23.
58.
go back to reference Amadini R, Sefrioui I, Mauro J, Gabbrielli M. Fast post-disaster emergency vehicle scheduling. In: DCAI. vol. 217 of Advances in intelligent systems and computing. Berlin: Springer; 2013. pp. 219–226. Amadini R, Sefrioui I, Mauro J, Gabbrielli M. Fast post-disaster emergency vehicle scheduling. In: DCAI. vol. 217 of Advances in intelligent systems and computing. Berlin: Springer; 2013. pp. 219–226.
Metadata
Title
Survival prediction of trauma patients: a study on US National Trauma Data Bank
Authors
I. Sefrioui
R. Amadini
J. Mauro
A. El Fallahi
M. Gabbrielli
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Trauma and Emergency Surgery / Issue 6/2017
Print ISSN: 1863-9933
Electronic ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-016-0757-3

Other articles of this Issue 6/2017

European Journal of Trauma and Emergency Surgery 6/2017 Go to the issue