Skip to main content
Top
Published in: Strahlentherapie und Onkologie 6/2014

01-06-2014 | Original article

Influence of experience and qualification on PET-based target volume delineation

When there is no expert—ask your colleague

Authors: C. Doll, V. Duncker-Rohr, G. Rücker, M. Mix, M. MacManus, D. De Ruysscher, W. Vogel, J. G. Eriksen, W. Oyen, A.-L. Grosu, W. Weber, Prof. Dr. U. Nestle

Published in: Strahlentherapie und Onkologie | Issue 6/2014

Login to get access

Abstract

Background and purpose

The integration of positron emission tomography (PET) information for target volume delineation in radiation treatment planning is routine in many centers. In contrast to automatic contouring, research on visual-manual delineation is scarce. The present study investigates the dependency of manual delineation on experience and qualification.

Patients and methods

A total of 44 international interdisciplinary observers each defined a [18F]fluorodeoxyglucose (FDG)-PET based gross tumor volume (GTV) using the same PET/CT scan from a patient with lung cancer. The observers were “experts” (E; n = 3), “experienced interdisciplinary pairs” (EP; 9 teams of radiation oncologist (RO) + nuclear medicine physician (NP)), “single field specialists” (SFS; n = 13), and “students” (S; n = 10). Five automatic delineation methods (AM) were also included. Volume sizes and concordance indices within the groups (pCI) and relative to the experts (eCI) were calculated.

Results

E (pCI = 0.67) and EP (pCI = 0.53) showed a significantly higher agreement within the groups as compared to SFS (pCI = 0.43, p = 0.03, and p = 0.006). In relation to the experts, EP (eCI = 0.55) showed better concordance compared to SFS (eCI = 0.49) or S (eCI = 0.47). The intermethod variability of the AM (pCI = 0.44) was similar to that of SFS and S, showing poorer agreement with the experts (eCI = 0.35).

Conclusion

The results suggest that interdisciplinary cooperation could be beneficial for consistent contouring. Joint delineation by a radiation oncologist and a nuclear medicine physician showed remarkable agreement and better concordance with the experts compared to other specialists. The relevant intermethod variability of the automatic algorithms underlines the need for further standardization and optimization in this field.
Appendix
Available only for authorised users
Literature
1.
go back to reference Delbeke D, Schoder H, Martin WH, Wahl RL (2009) Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 39:308–340PubMedCrossRef Delbeke D, Schoder H, Martin WH, Wahl RL (2009) Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 39:308–340PubMedCrossRef
2.
go back to reference Messa C, Di Muzio N, Picchio M et al (2006) PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 50:4–14PubMed Messa C, Di Muzio N, Picchio M et al (2006) PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 50:4–14PubMed
3.
go back to reference Nestle U, Weber W, Hentschel M, Grosu AL (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54:R1–R25 Nestle U, Weber W, Hentschel M, Grosu AL (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54:R1–R25
4.
go back to reference Abramyuk A, Appold S, Zophel K et al (2013) Modification of staging and treatment of head and neck cancer by FDG-PET/CT prior to radiotherapy. Strahlenther Onkol 189:197–201PubMedCrossRef Abramyuk A, Appold S, Zophel K et al (2013) Modification of staging and treatment of head and neck cancer by FDG-PET/CT prior to radiotherapy. Strahlenther Onkol 189:197–201PubMedCrossRef
5.
go back to reference Nestle U, Mix M, Weber W, Grosu AL (2011) Klinische Studien zum Einsatz der PET in der Bestrahlungsplanung in Deutschland: Ein Update. Nuklearmediziner 34:130–132CrossRef Nestle U, Mix M, Weber W, Grosu AL (2011) Klinische Studien zum Einsatz der PET in der Bestrahlungsplanung in Deutschland: Ein Update. Nuklearmediziner 34:130–132CrossRef
6.
go back to reference Bundschuh RA, Andratschke N, Dinges J et al (2012) Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther Onkol 188:592–598PubMedCrossRef Bundschuh RA, Andratschke N, Dinges J et al (2012) Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther Onkol 188:592–598PubMedCrossRef
7.
go back to reference Ashamalla H, Rafla S, Parikh K et al (2005) The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 63:1016–1023PubMedCrossRef Ashamalla H, Rafla S, Parikh K et al (2005) The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 63:1016–1023PubMedCrossRef
8.
go back to reference Fox JL, Rengan R, O᾿Meara W et al (2005) Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 62:70–75PubMedCrossRef Fox JL, Rengan R, O᾿Meara W et al (2005) Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 62:70–75PubMedCrossRef
9.
go back to reference Nestle U, Kremp S, Grosu AL (2006) Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 81:209–225PubMedCrossRef Nestle U, Kremp S, Grosu AL (2006) Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 81:209–225PubMedCrossRef
10.
go back to reference Nestle U, Walter K, Schmidt S et al (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597PubMedCrossRef Nestle U, Walter K, Schmidt S et al (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597PubMedCrossRef
11.
go back to reference Steenbakkers RJ, Duppen JC, Fitton I et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–448PubMedCrossRef Steenbakkers RJ, Duppen JC, Fitton I et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–448PubMedCrossRef
12.
go back to reference Elmpt W van, De Ruysscher D, Salm A van der et al (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104:67–71 Elmpt W van, De Ruysscher D, Salm A van der et al (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104:67–71
13.
go back to reference Wanet M, Lee JA, Weynand B et al (2011) Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens. Radiother Oncol 98:117–125PubMedCrossRef Wanet M, Lee JA, Weynand B et al (2011) Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens. Radiother Oncol 98:117–125PubMedCrossRef
14.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 46:1342–1348PubMed Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 46:1342–1348PubMed
15.
go back to reference Shepherd T, Teras M, Beichel R et al (2012) Comparative study with new accuracy metrics for target volume contouring in PET image guided radiation therapy. IEEE Trans Med Imaging 31:2006–2024PubMedCrossRef Shepherd T, Teras M, Beichel R et al (2012) Comparative study with new accuracy metrics for target volume contouring in PET image guided radiation therapy. IEEE Trans Med Imaging 31:2006–2024PubMedCrossRef
16.
go back to reference Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187PubMedCrossRef Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187PubMedCrossRef
17.
go back to reference Bayne M, Hicks RJ, Everitt S et al (2010) Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 77:1151–1157PubMedCrossRef Bayne M, Hicks RJ, Everitt S et al (2010) Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 77:1151–1157PubMedCrossRef
18.
go back to reference Schaefer A, Kremp S, Hellwig D et al (2008) A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 35:1989–1999PubMedCrossRef Schaefer A, Kremp S, Hellwig D et al (2008) A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 35:1989–1999PubMedCrossRef
19.
go back to reference Hanna GG, Carson KJ, Lynch T et al (2010) 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist? Int J Radiat Oncol Biol Phys 78:1040–1051PubMedCrossRef Hanna GG, Carson KJ, Lynch T et al (2010) 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist? Int J Radiat Oncol Biol Phys 78:1040–1051PubMedCrossRef
20.
go back to reference Baardwijk A van, Bosmans G, Boersma L et al (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68:771–778PubMedCrossRef Baardwijk A van, Bosmans G, Boersma L et al (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68:771–778PubMedCrossRef
21.
go back to reference Caldwell CB, Mah K, Skinner M, Danjoux CE (2003) Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 55:1381–1393PubMedCrossRef Caldwell CB, Mah K, Skinner M, Danjoux CE (2003) Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 55:1381–1393PubMedCrossRef
22.
go back to reference Sura S, Greco C, Gelblum D et al (2008) (18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 70:1397–1402PubMedCentralPubMedCrossRef Sura S, Greco C, Gelblum D et al (2008) (18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 70:1397–1402PubMedCentralPubMedCrossRef
23.
go back to reference Macmanus MP, Hicks RJ (2008) Where do we draw the line? Contouring tumors on positron emission tomography/computed tomography. Int J Radiat Oncol Biol Phys 71:2–4PubMedCrossRef Macmanus MP, Hicks RJ (2008) Where do we draw the line? Contouring tumors on positron emission tomography/computed tomography. Int J Radiat Oncol Biol Phys 71:2–4PubMedCrossRef
24.
go back to reference Weiss E, Hess CF (2003) The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy. Strahlenther Onkol 179:21–30PubMedCrossRef Weiss E, Hess CF (2003) The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy. Strahlenther Onkol 179:21–30PubMedCrossRef
25.
go back to reference Hofheinz F, Pötzsch C, Oehme C et al (2012) Automatic volume delineation in oncological PET. Nuklearmedizin 51:9–16PubMedCrossRef Hofheinz F, Pötzsch C, Oehme C et al (2012) Automatic volume delineation in oncological PET. Nuklearmedizin 51:9–16PubMedCrossRef
Metadata
Title
Influence of experience and qualification on PET-based target volume delineation
When there is no expert—ask your colleague
Authors
C. Doll
V. Duncker-Rohr
G. Rücker
M. Mix
M. MacManus
D. De Ruysscher
W. Vogel
J. G. Eriksen
W. Oyen
A.-L. Grosu
W. Weber
Prof. Dr. U. Nestle
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 6/2014
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-014-0644-y

Other articles of this Issue 6/2014

Strahlentherapie und Onkologie 6/2014 Go to the issue

Mitteilungen der Fachgesellschaften

Radiology in the Nazi era: part 3