Skip to main content
Top
Published in: Clinical Neuroradiology 4/2019

01-12-2019 | Original Article

MDCT-based Finite Element Analysis of Vertebral Fracture Risk: What Dose is Needed?

Authors: D. Anitha, Kai Mei, Michael Dieckmeyer, Felix K. Kopp, Nico Sollmann, Claus Zimmer, Jan S. Kirschke, Peter B. Noel, Thomas Baum, Karupppasamy Subburaj

Published in: Clinical Neuroradiology | Issue 4/2019

Login to get access

Abstract

Purpose

The aim of this study was to compare vertebral failure loads, predicted from finite element (FE) analysis of patients with and without osteoporotic vertebral fractures (OVF) at virtually reduced dose levels, compared to standard-dose exposure from multidetector computed tomography (MDCT) imaging and evaluate whether ultra-low dose derived FE analysis can still differentiate patient groups.

Materials and Methods

An institutional review board (IRB) approval was obtained for this retrospective study. A total of 16 patients were evaluated at standard-dose MDCT; eight with and eight without OVF. Images were reconstructed at virtually reduced dose levels (i. e. half, quarter and tenth of the standard dose). Failure load was determined at L1–3 from FE analysis and compared between standard, half, quarter, and tenth doses and used to differentiate between fracture and control groups.

Results

Failure load derived at standard dose (3254 ± 909 N and 3794 ± 984 N) did not significantly differ from half (3390 ± 890 N and 3860 ± 1063 N) and quarter dose (3375 ± 915 N and 3925 ± 990 N) but was significantly higher for one tenth dose (4513 ± 1762 N and 4766 ± 1628 N) for fracture and control groups, respectively. Failure load differed significantly between the two groups at standard, half and quarter doses, but not at tenth dose. Receiver operating characteristic (ROC) curve analysis also demonstrated that standard, half, and quarter doses can significantly differentiate the fracture from the control group.

Conclusion

The use of MDCT enables a dose reduction of at least 75% compared to standard-dose for an adequate prediction of vertebral failure load based on non-invasive FE analysis.
Literature
1.
go back to reference Francis RM, Aspray TJ, Hide G, Sutcliffe AM, Wilkinson P. Back pain in osteoporotic vertebral fractures. Osteoporos Int. 2008;19:895–903.CrossRefPubMed Francis RM, Aspray TJ, Hide G, Sutcliffe AM, Wilkinson P. Back pain in osteoporotic vertebral fractures. Osteoporos Int. 2008;19:895–903.CrossRefPubMed
2.
go back to reference Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.CrossRef Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.CrossRef
3.
go back to reference Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM; Osteoporotic Fractures in Men (MrOS) Research Group, Keaveny TM. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27:808–16.CrossRefPubMedPubMedCentral Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM; Osteoporotic Fractures in Men (MrOS) Research Group, Keaveny TM. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27:808–16.CrossRefPubMedPubMedCentral
4.
go back to reference Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29:570–80.CrossRefPubMedPubMedCentral Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29:570–80.CrossRefPubMedPubMedCentral
5.
go back to reference Anitha D, Subburaj K, Mei K, Kopp FK, Foehr P, Noel PB, Kirschke JS, Baum T. Effects of dose reduction on bone strength prediction using finite element analysis. Sci Rep. 2016;6:38441.CrossRef Anitha D, Subburaj K, Mei K, Kopp FK, Foehr P, Noel PB, Kirschke JS, Baum T. Effects of dose reduction on bone strength prediction using finite element analysis. Sci Rep. 2016;6:38441.CrossRef
6.
go back to reference Anitha D, Subburaj K, Baum T, Kirschke JS. Vertebral stability in multiple myeloma patients: a finite-element study. European Orthopaedic Research Society 24th Annual Meeting; Bologna, Italy. 2016. Anitha D, Subburaj K, Baum T, Kirschke JS. Vertebral stability in multiple myeloma patients: a finite-element study. European Orthopaedic Research Society 24th Annual Meeting; Bologna, Italy. 2016.
7.
go back to reference Bauer JS, Sidorenko I, Mueller D, Baum T, Issever AS, Eckstein F, Rummeny EJ, Link TM, Raeth CW. Prediction of bone strength by muCT and MDCT-based finite-element-models: how much spatial resolution is needed? Eur J Radiol. 2014;83:e36–42.CrossRefPubMed Bauer JS, Sidorenko I, Mueller D, Baum T, Issever AS, Eckstein F, Rummeny EJ, Link TM, Raeth CW. Prediction of bone strength by muCT and MDCT-based finite-element-models: how much spatial resolution is needed? Eur J Radiol. 2014;83:e36–42.CrossRefPubMed
8.
go back to reference Liebl H, Garcia EG, Holzner F, Noel PB, Burgkart R, Rummeny EJ, Baum T, Bauer JS. In-vivo assessment of femoral bone strength using Finite Element Analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures. PLoS One. 2015;10:e116907.CrossRefPubMedPubMedCentral Liebl H, Garcia EG, Holzner F, Noel PB, Burgkart R, Rummeny EJ, Baum T, Bauer JS. In-vivo assessment of femoral bone strength using Finite Element Analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures. PLoS One. 2015;10:e116907.CrossRefPubMedPubMedCentral
9.
go back to reference Yi JW, Park HJ, Lee SY, Rho MH, Hong HP, Choi YJ, Kim MS. Radiation dose reduction in multidetector CT in fracture evaluation. Br J Radiol. 2017;90(1077):20170240.CrossRef Yi JW, Park HJ, Lee SY, Rho MH, Hong HP, Choi YJ, Kim MS. Radiation dose reduction in multidetector CT in fracture evaluation. Br J Radiol. 2017;90(1077):20170240.CrossRef
10.
go back to reference Wiest PW, Locken JA, Heintz PH, Mettler FA Jr.. CT scanning: a major source of radiation exposure. Semin Ultrasound Ct Mr. 2002;23:402–10.CrossRef Wiest PW, Locken JA, Heintz PH, Mettler FA Jr.. CT scanning: a major source of radiation exposure. Semin Ultrasound Ct Mr. 2002;23:402–10.CrossRef
11.
go back to reference Costello JE, Cecava ND, Tucker JE, Bau JL. CT radiation dose: current controversies and dose reduction strategies. AJR Am J Roentgenol. 2013;201:1283–90.CrossRef Costello JE, Cecava ND, Tucker JE, Bau JL. CT radiation dose: current controversies and dose reduction strategies. AJR Am J Roentgenol. 2013;201:1283–90.CrossRef
12.
go back to reference Pontana F, Duhamel A, Pagniez J, Flohr T, Faivre JB, Hachulla AL, Remy J, Remy-Jardin M. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol. 2011;21:636–43.CrossRef Pontana F, Duhamel A, Pagniez J, Flohr T, Faivre JB, Hachulla AL, Remy J, Remy-Jardin M. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol. 2011;21:636–43.CrossRef
13.
go back to reference Niu YT, Mehta D, Zhang ZR, Zhang YX, Liu YF, Kang TL, Xian JF, Wang ZC. Radiation dose reduction in temporal bone CT with iterative reconstruction technique. AJNR Am J Neuroradiol. 2012;33:1020–6.CrossRef Niu YT, Mehta D, Zhang ZR, Zhang YX, Liu YF, Kang TL, Xian JF, Wang ZC. Radiation dose reduction in temporal bone CT with iterative reconstruction technique. AJNR Am J Neuroradiol. 2012;33:1020–6.CrossRef
14.
go back to reference Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol. 2010;194:191–9.CrossRef Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol. 2010;194:191–9.CrossRef
15.
go back to reference Konda SR, Goch AM, Leucht P, Christiano A, Gyftopoulos S, Yoeli G, Egol KA. The use of ultra-low-dose CT scans for the evaluation of limb fractures. Bone Jt J. 2016;98-B:1668–73.CrossRef Konda SR, Goch AM, Leucht P, Christiano A, Gyftopoulos S, Yoeli G, Egol KA. The use of ultra-low-dose CT scans for the evaluation of limb fractures. Bone Jt J. 2016;98-B:1668–73.CrossRef
16.
go back to reference Mulkens TH, Marchal P, Daineffe S, Salgado R, Bellinck P, te Rijdt B, Kegelaers B, Termote JL. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR Am J Neuroradiol. 2007;28:1444–50.CrossRef Mulkens TH, Marchal P, Daineffe S, Salgado R, Bellinck P, te Rijdt B, Kegelaers B, Termote JL. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR Am J Neuroradiol. 2007;28:1444–50.CrossRef
17.
go back to reference Zabić S, Wang Q, Morton T, Brown KM. A low dose simulation tool for CT systems with energy integrating detectors. Med Phys. 2013;40:31102.CrossRef Zabić S, Wang Q, Morton T, Brown KM. A low dose simulation tool for CT systems with energy integrating detectors. Med Phys. 2013;40:31102.CrossRef
18.
go back to reference Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F, Rummeny EJ, Kirschke JS, Noël PB, Baum T. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol. 2017;27:5261–71.CrossRef Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F, Rummeny EJ, Kirschke JS, Noël PB, Baum T. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol. 2017;27:5261–71.CrossRef
19.
go back to reference Huber MB, Carballido-Gamio J, Bauer JS, Baum T, Eckstein F, Lochmüller EM, Majumdar S, Link TM. Proximal femur specimens: Automated 3D trabecular bone mineral density analysis at multidetector CT—Correlation with biomechanical strength measurement. Radiology. 2008;247:472–81.CrossRef Huber MB, Carballido-Gamio J, Bauer JS, Baum T, Eckstein F, Lochmüller EM, Majumdar S, Link TM. Proximal femur specimens: Automated 3D trabecular bone mineral density analysis at multidetector CT—Correlation with biomechanical strength measurement. Radiology. 2008;247:472–81.CrossRef
20.
go back to reference Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17:347–55.CrossRef Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17:347–55.CrossRef
21.
go back to reference Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27:375–89.CrossRefPubMed Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27:375–89.CrossRefPubMed
22.
go back to reference Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27:1159–68.CrossRef Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27:1159–68.CrossRef
23.
go back to reference Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys. 2001;23:165–73.CrossRef Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys. 2001;23:165–73.CrossRef
24.
go back to reference Keyak JH, Lee IY, Skinner HB. Correlations between orthogonal mechanical-properties and density of trabecular bone—use of different densitometric measures. J Biomed Mater Res. 1994;28:1329–36.CrossRef Keyak JH, Lee IY, Skinner HB. Correlations between orthogonal mechanical-properties and density of trabecular bone—use of different densitometric measures. J Biomed Mater Res. 1994;28:1329–36.CrossRef
25.
go back to reference Keyak JH, Falkinstein Y. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys. 2003;25:781–7.CrossRef Keyak JH, Falkinstein Y. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys. 2003;25:781–7.CrossRef
26.
go back to reference Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50.CrossRef Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50.CrossRef
27.
go back to reference Imai K. Analysis of vertebral bone strength, fracture pattern, and fracture location: a validation study using a computed tomography-based nonlinear finite element analysis. Aging Dis. 2015;6:180–7.CrossRef Imai K. Analysis of vertebral bone strength, fracture pattern, and fracture location: a validation study using a computed tomography-based nonlinear finite element analysis. Aging Dis. 2015;6:180–7.CrossRef
28.
go back to reference Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2015;25:141–51.CrossRef Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2015;25:141–51.CrossRef
29.
go back to reference Tack D, Jahnen A, Kohler S, Harpes N, De Maertelaer V, Back C, Gevenois PA. Multidetector CT radiation dose optimisation in adults: short- and long-term effects of a clinical audit. Eur Radiol. 2014;24:169–75.CrossRef Tack D, Jahnen A, Kohler S, Harpes N, De Maertelaer V, Back C, Gevenois PA. Multidetector CT radiation dose optimisation in adults: short- and long-term effects of a clinical audit. Eur Radiol. 2014;24:169–75.CrossRef
Metadata
Title
MDCT-based Finite Element Analysis of Vertebral Fracture Risk: What Dose is Needed?
Authors
D. Anitha
Kai Mei
Michael Dieckmeyer
Felix K. Kopp
Nico Sollmann
Claus Zimmer
Jan S. Kirschke
Peter B. Noel
Thomas Baum
Karupppasamy Subburaj
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Clinical Neuroradiology / Issue 4/2019
Print ISSN: 1869-1439
Electronic ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-018-0722-0

Other articles of this Issue 4/2019

Clinical Neuroradiology 4/2019 Go to the issue

Original Article

The SAVE Technique