Skip to main content
Top
Published in: Clinical Neuroradiology 4/2017

01-12-2017 | Original Article

Time-resolved 3D Rotational Angiography (4D DSA) of the Lenticulostriate Arteries: Display of Normal Anatomic Variants and Collaterals in Cases with Chronic Obstruction of the MCA

Authors: S. Kammerer, M. Mueller-Eschner, J. Berkefeld, S. Tritt

Published in: Clinical Neuroradiology | Issue 4/2017

Login to get access

Abstract

Purpose

The lenticulostriate arteries (LSA) and other perforators may play a role for collateral supply in cases with ischemia due to stenosis or occlusions of the middle cerebral artery (MCA). Purpose of this case series was to evaluate the potential of time-resolved 3D rotational angiography data sets (4D DSA) for detailed visualization of anatomic variants of LSA feeders and for display of local collaterals involving the LSA in cases with chronic MCA obstruction.

Methods

Multiplanar and volume rendering reconstructions of 4D DSA data were computed in addition to standard postprocessing in 24 patients who had indications for 3D rotational angiography (3DRA) of the internal carotid artery (ICA) without pathologies of the ICA, middle cerebral artery (MCA) and anterior cerebral artery (ACA) main stems (n = 18) or with stenosis or chronic occlusion of the MCA (n = 6). For acquisition of 3DRA, we used a modified digital subtraction angiography (DSA) image acquisition protocol with an extended rotation angle of 260° and a prolonged scan time of 12 s on a Siemens Axiom Artis Zee biplane neuroangiography equipment. The 4D reconstructions of existing 3DRA data were computed on a dedicated workstation. Origin and course of LSA and other perforators were analyzed according to coronal multiplanar reconstructions (MPRs) with slice thicknesses between 6 and 28 mm.

Results

In all cases 4D reconstructions of the LSA were technically feasible and evaluable. As expected, origin and course of LSA showed a wide range of variations: The most common pattern was a common trunk dividing into multiple ascending branches originating from the proximal M1 (n = 5) or the proximal A1 segment (n = 4). Alternatively, 8 patients showed several individual branches that directly originated from the proximal M1 segment of the MCA and occasionally from the A1 segment of the ACA. In patients with M1 stenosis or occlusion, 4 out of 6 cases had local collaterals with involvement of proximal LSA trunks and a network parallel to the obstructed vessel segment. The 4D reconstructions were found to be equivalent (n = 16) or superior to 3D reconstructions (n = 8).

Conclusion

The 4D DSA reconstructions provide a reliable display of normal LSA variants and connections to local collateral networks in cases with chronic MCA obstruction. The possibility to select a correct angiographic phase is advantageous compared to 3D DSA.
Literature
1.
go back to reference Bouvy WH, Biessels GJ, Kuijf HJ, Kappelle LJ, Luijten PR, Zwanenburg JJ. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging. Invest Radiol. 2014;49:307–13.CrossRefPubMed Bouvy WH, Biessels GJ, Kuijf HJ, Kappelle LJ, Luijten PR, Zwanenburg JJ. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging. Invest Radiol. 2014;49:307–13.CrossRefPubMed
2.
go back to reference Cho ZH, Kang CK, Han JY, Kim SH, Kim KN, Hong SM, Park CW, Kim YB. Observation of the lenticulostriate arteries in the human brain in vivo using 7.0 T MR angiography. Stroke. 2008;39:1604–6.CrossRefPubMed Cho ZH, Kang CK, Han JY, Kim SH, Kim KN, Hong SM, Park CW, Kim YB. Observation of the lenticulostriate arteries in the human brain in vivo using 7.0 T MR angiography. Stroke. 2008;39:1604–6.CrossRefPubMed
3.
go back to reference Conijn MM, Hendrikse J, Zwanenburg JJ, Takahara T, Geerlings MI, Mali WP, Luijten PR. Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study. Eur Radiol. 2009;19:2986–92.CrossRefPubMedPubMedCentral Conijn MM, Hendrikse J, Zwanenburg JJ, Takahara T, Geerlings MI, Mali WP, Luijten PR. Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study. Eur Radiol. 2009;19:2986–92.CrossRefPubMedPubMedCentral
4.
go back to reference Davis B, Royalty K, Kowarschik M, Rohkohl C, Oberstar E, Aagaard-Kienitz B, Niemann D, Ozkan O, Strother C, Mistretta C. 4D digital subtraction angiography: implementation and demonstration of feasibility. AJNR Am J Neuroradiol. 2013;34:1914–21.CrossRefPubMed Davis B, Royalty K, Kowarschik M, Rohkohl C, Oberstar E, Aagaard-Kienitz B, Niemann D, Ozkan O, Strother C, Mistretta C. 4D digital subtraction angiography: implementation and demonstration of feasibility. AJNR Am J Neuroradiol. 2013;34:1914–21.CrossRefPubMed
5.
go back to reference Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride Jr GL, Lynch JR, Zaidat OO, Rumboldt Z, Cloft HJ; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383:333–41.CrossRefPubMed Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride Jr GL, Lynch JR, Zaidat OO, Rumboldt Z, Cloft HJ; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383:333–41.CrossRefPubMed
6.
go back to reference Umansky F, Gomes FB, Dujovny M, Diaz FG, Ausman JI, Mirchandani HG, Berman SK. The perforating branches of the middle cerebral artery. J Neurosurg. 1985;62:261–8.CrossRefPubMed Umansky F, Gomes FB, Dujovny M, Diaz FG, Ausman JI, Mirchandani HG, Berman SK. The perforating branches of the middle cerebral artery. J Neurosurg. 1985;62:261–8.CrossRefPubMed
7.
go back to reference Funaki T, Fushimi Y, Takahashi JC, Takagi Y, Araki Y, Yoshida K, Kikuchi T, Miyamoto S. Visualization of periventricular collaterals in moyamoya disease with flow-sensitive black-blood magnetic resonance angiography: preliminary experience. Neurol Med Chir (Tokyo). 2015;55:204–9.CrossRef Funaki T, Fushimi Y, Takahashi JC, Takagi Y, Araki Y, Yoshida K, Kikuchi T, Miyamoto S. Visualization of periventricular collaterals in moyamoya disease with flow-sensitive black-blood magnetic resonance angiography: preliminary experience. Neurol Med Chir (Tokyo). 2015;55:204–9.CrossRef
8.
go back to reference Funaki T, Takahashi JC, Yoshida K, Takagi Y, Fushimi Y, Kikuchi T, Mineharu Y, Okada T, Morimoto T, Miyamoto S. Periventricular anastomosis in moyamoya disease: detecting fragile collateral vessels with MR angiography. J Neurosurg. 2016;124:1766–72.CrossRefPubMed Funaki T, Takahashi JC, Yoshida K, Takagi Y, Fushimi Y, Kikuchi T, Mineharu Y, Okada T, Morimoto T, Miyamoto S. Periventricular anastomosis in moyamoya disease: detecting fragile collateral vessels with MR angiography. J Neurosurg. 2016;124:1766–72.CrossRefPubMed
9.
go back to reference Gotoh K, Okada T, Satogami N, Yakami M, Takahashi JC, Yoshida K, Ishii A, Tanaka S, Miyamoto S, Togashi K. Evaluation of CT angiography for visualisation of the lenticulostriate artery: difference between normotensive and hypertensive patients. Br J Radiol. 2012;85:e1004–e1008.CrossRefPubMedPubMedCentral Gotoh K, Okada T, Satogami N, Yakami M, Takahashi JC, Yoshida K, Ishii A, Tanaka S, Miyamoto S, Togashi K. Evaluation of CT angiography for visualisation of the lenticulostriate artery: difference between normotensive and hypertensive patients. Br J Radiol. 2012;85:e1004–e1008.CrossRefPubMedPubMedCentral
11.
go back to reference Harteveld AA, De Cocker LJ, Dieleman N, van der Kolk AG, Zwanenburg JJ, Robe PA, Luijten PR, Hendrikse J. High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla. PLOS ONE. 2015;10:e0121051.CrossRefPubMedPubMedCentral Harteveld AA, De Cocker LJ, Dieleman N, van der Kolk AG, Zwanenburg JJ, Robe PA, Luijten PR, Hendrikse J. High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla. PLOS ONE. 2015;10:e0121051.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Kang CK, Park CW, Han JY, Kim SH, Park CA, Kim KN, Hong SM, Kim YB, Lee KH, Cho ZH. Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med. 2009;61:136–44.CrossRefPubMed Kang CK, Park CW, Han JY, Kim SH, Park CA, Kim KN, Hong SM, Kim YB, Lee KH, Cho ZH. Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med. 2009;61:136–44.CrossRefPubMed
14.
go back to reference Kyriakou Y, Struffert T, Dörfler A, Kalender WA. Basic principles of flat detector computed tomography (FD-CT). Radiologe. 2009;49:811–9.CrossRefPubMed Kyriakou Y, Struffert T, Dörfler A, Kalender WA. Basic principles of flat detector computed tomography (FD-CT). Radiologe. 2009;49:811–9.CrossRefPubMed
15.
go back to reference Lescher S, Gehrisch S, Klein S, Berkefeld J. Time-resolved 3D rotational angiography: display of detailed neurovascular anatomy in patients with intracranial vascular malformations. J Neurointerv Surg. 2016 Aug 4. [Epub ahead of print] Lescher S, Gehrisch S, Klein S, Berkefeld J. Time-resolved 3D rotational angiography: display of detailed neurovascular anatomy in patients with intracranial vascular malformations. J Neurointerv Surg. 2016 Aug 4. [Epub ahead of print]
16.
go back to reference Lescher S, Zimmermann M, Konczalla J, Deller T, Porto L, Seifert V, Berkefeld J. Evaluation of the perforators of the anterior communicating artery (AComA) using routine cerebral 3D rotational angiography. J Neurointerv Surg. 2016;8:1061–6.CrossRefPubMed Lescher S, Zimmermann M, Konczalla J, Deller T, Porto L, Seifert V, Berkefeld J. Evaluation of the perforators of the anterior communicating artery (AComA) using routine cerebral 3D rotational angiography. J Neurointerv Surg. 2016;8:1061–6.CrossRefPubMed
17.
go back to reference Okuchi S, Okada T, Ihara M, Gotoh K, Kido A, Fujimoto K, Yamamoto A, Kanagaki M, Tanaka S, Takahashi R, Togashi K. Visualization of lenticulostriate arteries by flow-sensitive black-blood MR angiography on a 1.5 T MRI system: a comparative study between subjects with and without stroke. AJNR Am J Neuroradiol. 2013;34:780–4.CrossRefPubMed Okuchi S, Okada T, Ihara M, Gotoh K, Kido A, Fujimoto K, Yamamoto A, Kanagaki M, Tanaka S, Takahashi R, Togashi K. Visualization of lenticulostriate arteries by flow-sensitive black-blood MR angiography on a 1.5 T MRI system: a comparative study between subjects with and without stroke. AJNR Am J Neuroradiol. 2013;34:780–4.CrossRefPubMed
18.
go back to reference Parry PV, Ducruet AF. Four-dimensional digital subtraction angiography: implementation and demonstration of feasibility. World Neurosurg. 2014;81:454–5.CrossRefPubMed Parry PV, Ducruet AF. Four-dimensional digital subtraction angiography: implementation and demonstration of feasibility. World Neurosurg. 2014;81:454–5.CrossRefPubMed
19.
go back to reference Sandoval-Garcia C, Royalty K, Aagaard-Kienitz B, Schafer S, Yang P, Strother C. A comparison of 4D DSA with 2D and 3D DSA in the analysis of normal vascular structures in a canine model. AJNR Am J Neuroradiol. 2015;36:1959–63.CrossRefPubMed Sandoval-Garcia C, Royalty K, Aagaard-Kienitz B, Schafer S, Yang P, Strother C. A comparison of 4D DSA with 2D and 3D DSA in the analysis of normal vascular structures in a canine model. AJNR Am J Neuroradiol. 2015;36:1959–63.CrossRefPubMed
20.
go back to reference Sandoval-Garcia C, Royalty K, Yang P, Niemann D, Ahmed A, Aagaard-Kienitz B, Başkaya MK, Schafer S, Strother C. 4D DSA a new technique for arteriovenous malformation evaluation: a feasibility study. J Neurointerv Surg. 2016;8:300–4.CrossRefPubMed Sandoval-Garcia C, Royalty K, Yang P, Niemann D, Ahmed A, Aagaard-Kienitz B, Başkaya MK, Schafer S, Strother C. 4D DSA a new technique for arteriovenous malformation evaluation: a feasibility study. J Neurointerv Surg. 2016;8:300–4.CrossRefPubMed
21.
go back to reference Seo SW, Kang CK, Kim SH, Yoon DS, Liao W, Wörz S, Rohr K, Kim YB, Na DL, Cho ZH. Measurements of lenticulostriate arteries using 7 T MRI: new imaging markers for subcortical vascular dementia. J Neurol Sci. 2012;322:200–5.CrossRefPubMed Seo SW, Kang CK, Kim SH, Yoon DS, Liao W, Wörz S, Rohr K, Kim YB, Na DL, Cho ZH. Measurements of lenticulostriate arteries using 7 T MRI: new imaging markers for subcortical vascular dementia. J Neurol Sci. 2012;322:200–5.CrossRefPubMed
22.
go back to reference Srinivasan VM, Chintalapani G, Duckworth EA, Kan P. Application of 4‑dimensional digital subtraction angiography for dural arteriovenous fistulas. World Neurosurg. 2016;96:24–30.CrossRefPubMed Srinivasan VM, Chintalapani G, Duckworth EA, Kan P. Application of 4‑dimensional digital subtraction angiography for dural arteriovenous fistulas. World Neurosurg. 2016;96:24–30.CrossRefPubMed
23.
go back to reference Strobel N, Meissner O, Boese J, Brunner T, Heigl B, Hoheisel M, Lauritsch G, Nagel M, Pfister M, Rührnschopf EP, Scholz B, Schreiber B, Spahn M, Zellerhoff M, Klingenbeck-Regn K. 3D imaging with flat-detector C‑arm systems. In: Reiser MF, Becker CR, Nikolaou K, Glazer G, editors. Multislice CT. Berlin: Springer; 2009. pp. 33–51.CrossRef Strobel N, Meissner O, Boese J, Brunner T, Heigl B, Hoheisel M, Lauritsch G, Nagel M, Pfister M, Rührnschopf EP, Scholz B, Schreiber B, Spahn M, Zellerhoff M, Klingenbeck-Regn K. 3D imaging with flat-detector C‑arm systems. In: Reiser MF, Becker CR, Nikolaou K, Glazer G, editors. Multislice CT. Berlin: Springer; 2009. pp. 33–51.CrossRef
24.
go back to reference Struffert T, Lang S, Scholz R, Hauer M, Dörfler A. Strahlendosis bei zerebraler Angiographie und Flachdetektor-CT-Applikationen in der Neuroradiologie. Radiologe. 2015;55:654–62.CrossRefPubMed Struffert T, Lang S, Scholz R, Hauer M, Dörfler A. Strahlendosis bei zerebraler Angiographie und Flachdetektor-CT-Applikationen in der Neuroradiologie. Radiologe. 2015;55:654–62.CrossRefPubMed
Metadata
Title
Time-resolved 3D Rotational Angiography (4D DSA) of the Lenticulostriate Arteries: Display of Normal Anatomic Variants and Collaterals in Cases with Chronic Obstruction of the MCA
Authors
S. Kammerer
M. Mueller-Eschner
J. Berkefeld
S. Tritt
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical Neuroradiology / Issue 4/2017
Print ISSN: 1869-1439
Electronic ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-017-0578-8

Other articles of this Issue 4/2017

Clinical Neuroradiology 4/2017 Go to the issue