Skip to main content
Top
Published in: Clinical Neuroradiology 1/2014

01-03-2014 | Review Article

Neuroimaging of Epilepsy: Lesions, Networks, Oscillations

Authors: E. Abela, MD, C. Rummel, M. Hauf, C. Weisstanner, K. Schindler, R. Wiest

Published in: Clinical Neuroradiology | Issue 1/2014

Login to get access

Abstract

While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.
Literature
1.
go back to reference Bell GS, Sander JW. The epidemiology of epilepsy: the size of the problem. Seizure. 2002;11(Suppl A):306–14. (Quiz 15–6).PubMed Bell GS, Sander JW. The epidemiology of epilepsy: the size of the problem. Seizure. 2002;11(Suppl A):306–14. (Quiz 15–6).PubMed
2.
go back to reference Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85. doi:10.1111/j.1528-1167.2010.02522.x.PubMedCrossRef Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85. doi:10.1111/j.1528-1167.2010.02522.x.PubMedCrossRef
3.
go back to reference Begley CE, Famulari M, Annegers JF, Lairson DR, Reynolds TF, Coan S, et al. The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia. 2000;41(3):342–51.PubMedCrossRef Begley CE, Famulari M, Annegers JF, Lairson DR, Reynolds TF, Coan S, et al. The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia. 2000;41(3):342–51.PubMedCrossRef
4.
go back to reference Gaitatzis A, Sander JW. The mortality of epilepsy revisited. Epileptic Disord. 2004;6(1):3–13.PubMed Gaitatzis A, Sander JW. The mortality of epilepsy revisited. Epileptic Disord. 2004;6(1):3–13.PubMed
5.
go back to reference Gaitatzis A, Sisodiya SM, Sander JW. The somatic comorbidity of epilepsy: a weighty but often unrecognized burden. Epilepsia. 2012;53(8):1282–93. doi:10.1111/j.1528-1167.2012.03528.x.PubMedCrossRef Gaitatzis A, Sisodiya SM, Sander JW. The somatic comorbidity of epilepsy: a weighty but often unrecognized burden. Epilepsia. 2012;53(8):1282–93. doi:10.1111/j.1528-1167.2012.03528.x.PubMedCrossRef
6.
go back to reference Gilliam F, Hecimovic H, Sheline Y. Psychiatric comorbidity, health, and function in epilepsy. Epilepsy Behav. 2003;4(Suppl 4):S26–30. doi:S1525505003002828 [pii].PubMedCrossRef Gilliam F, Hecimovic H, Sheline Y. Psychiatric comorbidity, health, and function in epilepsy. Epilepsy Behav. 2003;4(Suppl 4):S26–30. doi:S1525505003002828 [pii].PubMedCrossRef
7.
go back to reference Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clinical Neurophysiol. 2010;121(8):1153–75. doi:10.1016/j.clinph.2010.01.004.CrossRef Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clinical Neurophysiol. 2010;121(8):1153–75. doi:10.1016/j.clinph.2010.01.004.CrossRef
8.
go back to reference Recommendations for neuroimaging of patients with epilepsy. Commission on Neuroimaging of the International League Against Epilepsy. Epilepsia. 1997;38(11):1255–6. Recommendations for neuroimaging of patients with epilepsy. Commission on Neuroimaging of the International League Against Epilepsy. Epilepsia. 1997;38(11):1255–6.
9.
go back to reference Craven IJ, Griffiths PD, Bhattacharyya D, Grunewald RA, Hodgson T, Connolly DJ, et al. 3.0 T MRI of 2000 consecutive patients with localisation-related epilepsy. Br J Radiol. 2012;85(1017):1236–42. doi:30177037 [pii] 10.1259/bjr/30177037.PubMedCentralPubMedCrossRef Craven IJ, Griffiths PD, Bhattacharyya D, Grunewald RA, Hodgson T, Connolly DJ, et al. 3.0 T MRI of 2000 consecutive patients with localisation-related epilepsy. Br J Radiol. 2012;85(1017):1236–42. doi:30177037 [pii] 10.1259/bjr/30177037.PubMedCentralPubMedCrossRef
10.
go back to reference Scott CA, Fish DR, Smith SJ, Free SL, Stevens JM, Thompson PJ, et al. Presurgical evaluation of patients with epilepsy and normal MRI: role of scalp video-EEG telemetry. J Neurol Neurosurg Psychiatry. 1999;66(1):69–71.PubMedCentralPubMedCrossRef Scott CA, Fish DR, Smith SJ, Free SL, Stevens JM, Thompson PJ, et al. Presurgical evaluation of patients with epilepsy and normal MRI: role of scalp video-EEG telemetry. J Neurol Neurosurg Psychiatry. 1999;66(1):69–71.PubMedCentralPubMedCrossRef
11.
go back to reference Bronen RA, Fulbright RK, Spencer DD, Spencer SS, Kim JH, Lange RC, et al. Refractory epilepsy: comparison of MR imaging, CT, and histopathologic findings in 117 patients. Radiology. 1996;201(1):97–105.PubMed Bronen RA, Fulbright RK, Spencer DD, Spencer SS, Kim JH, Lange RC, et al. Refractory epilepsy: comparison of MR imaging, CT, and histopathologic findings in 117 patients. Radiology. 1996;201(1):97–105.PubMed
12.
go back to reference Bernasconi A, Antel SB, Collins DL, Bernasconi N, Olivier A, Dubeau F, et al. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy. Ann Neurol. 2001;49(6):770–5.PubMedCrossRef Bernasconi A, Antel SB, Collins DL, Bernasconi N, Olivier A, Dubeau F, et al. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy. Ann Neurol. 2001;49(6):770–5.PubMedCrossRef
13.
go back to reference Besson P, Bernasconi N, Colliot O, Evans A, Bernasconi A. Surface-based texture and morphological analysis detects subtle cortical dysplasia. Med Image Comput Comput Assist Interv. 2008;11(Pt 1):645–52.PubMed Besson P, Bernasconi N, Colliot O, Evans A, Bernasconi A. Surface-based texture and morphological analysis detects subtle cortical dysplasia. Med Image Comput Comput Assist Interv. 2008;11(Pt 1):645–52.PubMed
14.
go back to reference Wagner J, Weber B, Urbach H, Elger CE, Huppertz HJ. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134(Pt 10):2844–54. doi:awr204 [pii] 10.1093/brain/awr204.PubMedCrossRef Wagner J, Weber B, Urbach H, Elger CE, Huppertz HJ. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134(Pt 10):2844–54. doi:awr204 [pii] 10.1093/brain/awr204.PubMedCrossRef
15.
go back to reference Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I. Connectomics and epilepsy. Current Opin Neurol. 2013;26(2):186–94. doi:10.1097/WCO.0b013e32835ee5b8.CrossRef Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I. Connectomics and epilepsy. Current Opin Neurol. 2013;26(2):186–94. doi:10.1097/WCO.0b013e32835ee5b8.CrossRef
16.
go back to reference Richardson MP. Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry. 2012;83(12):1238–48. doi:jnnp-2011-301944 [pii] 10.1136/jnnp-2011-301944.PubMedCrossRef Richardson MP. Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry. 2012;83(12):1238–48. doi:jnnp-2011-301944 [pii] 10.1136/jnnp-2011-301944.PubMedCrossRef
17.
go back to reference Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43(3):219–27.PubMedCrossRef Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43(3):219–27.PubMedCrossRef
18.
go back to reference Engel J Jr, Pitkanen A, Loeb JA, Dudek FE, Bertram EH 3rd, Cole AJ, et al. Epilepsy biomarkers. Epilepsia. 2013;54(Suppl 4):61–9. doi:10.1111/epi.12299.PubMedCrossRef Engel J Jr, Pitkanen A, Loeb JA, Dudek FE, Bertram EH 3rd, Cole AJ, et al. Epilepsy biomarkers. Epilepsia. 2013;54(Suppl 4):61–9. doi:10.1111/epi.12299.PubMedCrossRef
19.
go back to reference Sporns O. From simple graphs to the connectome: networks in neuroimaging. NeuroImage. 2012;62(2):881–6. doi:S1053-8119(11)01017-2 [pii] 10.1016/j.neuroimage.2011.08.085. Sporns O. From simple graphs to the connectome: networks in neuroimaging. NeuroImage. 2012;62(2):881–6. doi:S1053-8119(11)01017-2 [pii] 10.1016/j.neuroimage.2011.08.085.
20.
go back to reference Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev Neurosci. 2009;10(3):186–98. doi:nrn2575 [pii] 10.1038/nrn2575. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev Neurosci. 2009;10(3):186–98. doi:nrn2575 [pii] 10.1038/nrn2575.
21.
go back to reference Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36. doi:10.1089/brain.2011.0008.PubMedCrossRef Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36. doi:10.1089/brain.2011.0008.PubMedCrossRef
22.
23.
go back to reference Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K. Effective connectivity: influence, causality and biophysical modeling. NeuroImage. 2011;58(2):339–61. doi:10.1016/j.neuroimage.2011.03.058.PubMedCentralPubMedCrossRef Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K. Effective connectivity: influence, causality and biophysical modeling. NeuroImage. 2011;58(2):339–61. doi:10.1016/j.neuroimage.2011.03.058.PubMedCentralPubMedCrossRef
24.
go back to reference Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage. 2009;45(1 Suppl):S163–72. doi:10.1016/j.neuroimage.2008.10.057. Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage. 2009;45(1 Suppl):S163–72. doi:10.1016/j.neuroimage.2008.10.057.
25.
go back to reference Calhoun VD, Pekar JJ, McGinty VB, Adali T, Watson TD, Pearlson GD. Different activation dynamics in multiple neural systems during simulated driving. Hum Brain Mapp. 2002;16(3):158–67. doi:10.1002/hbm.10032.PubMedCrossRef Calhoun VD, Pekar JJ, McGinty VB, Adali T, Watson TD, Pearlson GD. Different activation dynamics in multiple neural systems during simulated driving. Hum Brain Mapp. 2002;16(3):158–67. doi:10.1002/hbm.10032.PubMedCrossRef
26.
go back to reference Rzepecki-Smith CI, Meda SA, Calhoun VD, Stevens MC, Jafri MJ, Astur RS, et al. Disruptions in functional network connectivity during alcohol intoxicated driving. Alcohol Clin Exp Res. 2010;34(3):479–87. doi:ACER1112 [pii] 10.1111/j.1530-0277.2009.01112.x. Rzepecki-Smith CI, Meda SA, Calhoun VD, Stevens MC, Jafri MJ, Astur RS, et al. Disruptions in functional network connectivity during alcohol intoxicated driving. Alcohol Clin Exp Res. 2010;34(3):479–87. doi:ACER1112 [pii] 10.1111/j.1530-0277.2009.01112.x.
27.
go back to reference Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365–75. doi:10.1002/ana.21905.PubMedCentralPubMed Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365–75. doi:10.1002/ana.21905.PubMedCentralPubMed
28.
go back to reference Sours C, Zhuo J, Janowich J, Aarabi B, Shanmuganathan K, Gullapalli RP. Default mode network interference in mild traumatic brain injury—a pilot resting state study. Brain Res. 2013;1537:201–15. doi:S0006-8993(13)01171-2 [pii] 10.1016/j.brainres.2013.08.034. Sours C, Zhuo J, Janowich J, Aarabi B, Shanmuganathan K, Gullapalli RP. Default mode network interference in mild traumatic brain injury—a pilot resting state study. Brain Res. 2013;1537:201–15. doi:S0006-8993(13)01171-2 [pii] 10.1016/j.brainres.2013.08.034.
29.
go back to reference Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265(3):882–92. doi:265/3/882 [pii] 10.1148/radiol.12120748. Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265(3):882–92. doi:265/3/882 [pii] 10.1148/radiol.12120748.
30.
go back to reference Sandrone S, Bacigaluppi M. Learning from default mode network: the predictive value of resting state in traumatic brain injury. J Neurosci. 2012;32(6):1915–7. doi:32/6/1915 [pii] 10.1523/JNEUROSCI.5637-11.2012. Sandrone S, Bacigaluppi M. Learning from default mode network: the predictive value of resting state in traumatic brain injury. J Neurosci. 2012;32(6):1915–7. doi:32/6/1915 [pii] 10.1523/JNEUROSCI.5637-11.2012.
31.
go back to reference Rummel C, Verma RK, Schopf V, Abela E, Hauf M, Berruecos JF, et al. Time course based artifact identification for independent components of resting-state FMRI. Front Hum Neurosci. 2013;7:214. doi:10.3389/fnhum.2013.00214.PubMedCentralPubMedCrossRef Rummel C, Verma RK, Schopf V, Abela E, Hauf M, Berruecos JF, et al. Time course based artifact identification for independent components of resting-state FMRI. Front Hum Neurosci. 2013;7:214. doi:10.3389/fnhum.2013.00214.PubMedCentralPubMedCrossRef
32.
go back to reference van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–34. doi:S0924-977X(10)00068-4 [pii] 10.1016/j.euroneuro.2010.03.008. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–34. doi:S0924-977X(10)00068-4 [pii] 10.1016/j.euroneuro.2010.03.008.
33.
go back to reference Rummel C, Abela E, Muller M, Hauf M, Scheidegger O, Wiest R, et al. Uniform approach to linear and nonlinear interrelation patterns in multivariate time series. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;83(6 Pt 2):066215.PubMedCrossRef Rummel C, Abela E, Muller M, Hauf M, Scheidegger O, Wiest R, et al. Uniform approach to linear and nonlinear interrelation patterns in multivariate time series. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;83(6 Pt 2):066215.PubMedCrossRef
34.
go back to reference Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29(6):1860–73. doi:29/6/1860 [pii] 10.1523/JNEUROSCI.5062-08.2009. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29(6):1860–73. doi:29/6/1860 [pii] 10.1523/JNEUROSCI.5062-08.2009.
35.
go back to reference Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, et al. Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage. 2010;50(3):970–83. doi:S1053-8119(09)01315-9 [pii] 10.1016/j.neuroimage.2009.12.027. Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, et al. Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage. 2010;50(3):970–83. doi:S1053-8119(09)01315-9 [pii] 10.1016/j.neuroimage.2009.12.027.
36.
go back to reference Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52(3):1059–69. doi:S1053-8119(09)01074-X [pii] 10.1016/j.neuroimage.2009.10.003. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52(3):1059–69. doi:S1053-8119(09)01074-X [pii] 10.1016/j.neuroimage.2009.10.003.
37.
go back to reference Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A. 1994;91(11):5033–7.PubMedCentralPubMedCrossRef Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A. 1994;91(11):5033–7.PubMedCentralPubMedCrossRef
38.
go back to reference Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol. 2013;23(2):162–71. doi:S0959-4388(12)00189-4 [pii] 10.1016/j.conb.2012.11.015. Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol. 2013;23(2):162–71. doi:S0959-4388(12)00189-4 [pii] 10.1016/j.conb.2012.11.015.
39.
go back to reference Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701.PubMedCrossRef Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701.PubMedCrossRef
40.
go back to reference Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2. doi:10.1038/30918.PubMedCrossRef Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2. doi:10.1038/30918.PubMedCrossRef
41.
go back to reference Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1(1):3. doi:1753-4631-1-3 [pii] 10.1186/1753-4631-1-3. Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1(1):3. doi:1753-4631-1-3 [pii] 10.1186/1753-4631-1-3.
42.
go back to reference Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8. doi:10.1073/pnas.0135058100.PubMedCentralPubMedCrossRef Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8. doi:10.1073/pnas.0135058100.PubMedCentralPubMedCrossRef
43.
go back to reference Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14(3):140–51. doi:10.1002/hbm.1048 [pii].PubMedCrossRef Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14(3):140–51. doi:10.1002/hbm.1048 [pii].PubMedCrossRef
44.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89. doi:10.1006/nimg.2001.0978 S1053811901909784 [pii]. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89. doi:10.1006/nimg.2001.0978 S1053811901909784 [pii].
45.
go back to reference Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci. 2012;32(18):6053–60. doi:10.1523/JNEUROSCI.0447-12.2012.PubMedCrossRef Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci. 2012;32(18):6053–60. doi:10.1523/JNEUROSCI.0447-12.2012.PubMedCrossRef
46.
go back to reference Ritter P, Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev. 2006;30(6):823–38. doi:10.1016/j.neubiorev.2006.06.008.PubMedCrossRef Ritter P, Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev. 2006;30(6):823–38. doi:10.1016/j.neubiorev.2006.06.008.PubMedCrossRef
47.
go back to reference Mulert C, Lemieux L. EEG-fMRI—phyiological basis, technique and applications. Springer; 2010. p. 309–31. Mulert C, Lemieux L. EEG-fMRI—phyiological basis, technique and applications. Springer; 2010. p. 309–31.
48.
go back to reference Moeller F, Muhle H, Wiegand G, Wolff S, Stephani U, Siniatchkin M. EEG-fMRI study of generalized spike and wave discharges without transitory cognitive impairment. Epilepsy Behav. 2010;18(3):313–6. doi:S1525-5050(10)00275-1 [pii] 10.1016/j.yebeh.2010.02.013. Moeller F, Muhle H, Wiegand G, Wolff S, Stephani U, Siniatchkin M. EEG-fMRI study of generalized spike and wave discharges without transitory cognitive impairment. Epilepsy Behav. 2010;18(3):313–6. doi:S1525-5050(10)00275-1 [pii] 10.1016/j.yebeh.2010.02.013.
49.
go back to reference LeVan P, Tyvaert L, Moeller F, Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. NeuroImage. 2010;49(1):366–78. doi:10.1016/j.neuroimage.2009.07.064.PubMedCentralPubMedCrossRef LeVan P, Tyvaert L, Moeller F, Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. NeuroImage. 2010;49(1):366–78. doi:10.1016/j.neuroimage.2009.07.064.PubMedCentralPubMedCrossRef
50.
go back to reference Jann K, Wiest R, Hauf M, Meyer K, Boesch C, Mathis J, et al. BOLD correlates of continuously fluctuating epileptic activity isolated by independent component analysis. Neuroimage. 2008;42(2):635–48. doi:S1053-8119(08)00612-5 [pii] 10.1016/j.neuroimage.2008.05.001. Jann K, Wiest R, Hauf M, Meyer K, Boesch C, Mathis J, et al. BOLD correlates of continuously fluctuating epileptic activity isolated by independent component analysis. Neuroimage. 2008;42(2):635–48. doi:S1053-8119(08)00612-5 [pii] 10.1016/j.neuroimage.2008.05.001.
51.
go back to reference Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9. doi:S1053-8119(06)01109-8 [pii] 10.1016/j.neuroimage.2006.11.004. Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9. doi:S1053-8119(06)01109-8 [pii] 10.1016/j.neuroimage.2006.11.004.
52.
go back to reference Onton J, Makeig S. Information-based modeling of event-related brain dynamics. Prog Brain Res. 2006;159:99–120. doi:S0079-6123(06)59007-7 [pii] 10.1016/S0079-6123(06)59007-7. Onton J, Makeig S. Information-based modeling of event-related brain dynamics. Prog Brain Res. 2006;159:99–120. doi:S0079-6123(06)59007-7 [pii] 10.1016/S0079-6123(06)59007-7.
53.
go back to reference De Tiege X, Laufs H, Clark CA, et al. EEG-fMRI in children with pharmacoresistant focal epilepsy. Epilepsia. 2007;48(2):385–9. doi:EPI951 [pii] 10.1111/j.1528-1167.2006.00951.x. De Tiege X, Laufs H, Clark CA, et al. EEG-fMRI in children with pharmacoresistant focal epilepsy. Epilepsia. 2007;48(2):385–9. doi:EPI951 [pii] 10.1111/j.1528-1167.2006.00951.x.
54.
go back to reference Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res. 2006;1088(1):148–66. doi:S0006-8993(06)00524-5 [pii] 10.1016/j.brainres.2006.02.098. Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res. 2006;1088(1):148–66. doi:S0006-8993(06)00524-5 [pii] 10.1016/j.brainres.2006.02.098.
55.
go back to reference Moeller F, Tyvaert L, Nguyen DK, LeVan P, Bouthillier A, Kobayashi E, et al. EEG-fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology. 2009;73(23):2023–30. doi:10.1212/WNL.0b013e3181c55d17.PubMedCentralPubMedCrossRef Moeller F, Tyvaert L, Nguyen DK, LeVan P, Bouthillier A, Kobayashi E, et al. EEG-fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology. 2009;73(23):2023–30. doi:10.1212/WNL.0b013e3181c55d17.PubMedCentralPubMedCrossRef
56.
go back to reference Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FS. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain. 2007;130(Pt 9):2343–53. doi:10.1093/brain/awm141. Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FS. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain. 2007;130(Pt 9):2343–53. doi:10.1093/brain/awm141.
57.
go back to reference Weir B. The morphology of the spike-wave complex. Electroencephalogr Clin Neurophysiol. 1965;19(3):284–90.PubMedCrossRef Weir B. The morphology of the spike-wave complex. Electroencephalogr Clin Neurophysiol. 1965;19(3):284–90.PubMedCrossRef
58.
go back to reference Panayiotopoulos CP, Chroni E, Daskalopoulos C, Baker A, Rowlinson S, Walsh P. Typical absence seizures in adults: clinical, EEG, video-EEG findings and diagnostic/syndromic considerations. J Neurol Neurosurg Psychiatry. 1992;55(11):1002–8.PubMedCentralPubMedCrossRef Panayiotopoulos CP, Chroni E, Daskalopoulos C, Baker A, Rowlinson S, Walsh P. Typical absence seizures in adults: clinical, EEG, video-EEG findings and diagnostic/syndromic considerations. J Neurol Neurosurg Psychiatry. 1992;55(11):1002–8.PubMedCentralPubMedCrossRef
59.
go back to reference Holmes GL, McKeever M, Adamson M. Absence seizures in children: clinical and electroencephalographic features. Ann Neurol. 1987;21(3):268–73. doi:10.1002/ana.410210308.PubMedCrossRef Holmes GL, McKeever M, Adamson M. Absence seizures in children: clinical and electroencephalographic features. Ann Neurol. 1987;21(3):268–73. doi:10.1002/ana.410210308.PubMedCrossRef
60.
go back to reference Gloor P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia. 1968;9(3):249–63.PubMedCrossRef Gloor P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia. 1968;9(3):249–63.PubMedCrossRef
61.
go back to reference Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol. 2005;62(3):371–6. doi:62/3/371 [pii] 10.1001/archneur.62.3.371. Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol. 2005;62(3):371–6. doi:62/3/371 [pii] 10.1001/archneur.62.3.371.
62.
go back to reference Blumenfeld H, McCormick DA. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci. 2000;20(13):5153–62. doi:20/13/5153 [pii].PubMed Blumenfeld H, McCormick DA. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci. 2000;20(13):5153–62. doi:20/13/5153 [pii].PubMed
63.
go back to reference Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. NeuroImage. 2003;20(4):1915–22.PubMedCrossRef Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. NeuroImage. 2003;20(4):1915–22.PubMedCrossRef
64.
go back to reference Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain. 2004;127(Pt 5):1127–44. doi:10.1093/brain/awh136. Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain. 2004;127(Pt 5):1127–44. doi:10.1093/brain/awh136.
65.
go back to reference Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. NeuroImage. 2006;31(4):1700–10. doi:10.1016/j.neuroimage.2006.02.016.PubMedCrossRef Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. NeuroImage. 2006;31(4):1700–10. doi:10.1016/j.neuroimage.2006.02.016.PubMedCrossRef
66.
go back to reference Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, et al. Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia. 2010;51(10):2000–10. doi:EPI2698 [pii] 10.1111/j.1528-1167.2010.02698.x. Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, et al. Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia. 2010;51(10):2000–10. doi:EPI2698 [pii] 10.1111/j.1528-1167.2010.02698.x.
67.
go back to reference Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia. 2008;49(9):1510–9. doi:10.1111/j.1528-1167.2008.01626.x.PubMedCrossRef Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia. 2008;49(9):1510–9. doi:10.1111/j.1528-1167.2008.01626.x.PubMedCrossRef
68.
go back to reference Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82. doi:10.1073/pnas.98.2.676. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82. doi:10.1073/pnas.98.2.676.
69.
go back to reference Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. doi:10.1196/annals.1440.011.PubMedCrossRef Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. doi:10.1196/annals.1440.011.PubMedCrossRef
70.
go back to reference Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37(4):1083–90. (Discussion 97–9). doi:10.1016/j.neuroimage.2007.02.041. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37(4):1083–90. (Discussion 97–9). doi:10.1016/j.neuroimage.2007.02.041.
71.
go back to reference Bonnelle V, Ham TE, Leech R, Kinnunen KM, Mehta MA, Greenwood RJ, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A. 2012;109(12):4690–5. doi:10.1073/pnas.1113455109. Bonnelle V, Ham TE, Leech R, Kinnunen KM, Mehta MA, Greenwood RJ, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A. 2012;109(12):4690–5. doi:10.1073/pnas.1113455109.
72.
go back to reference Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci. 2010;30(17):5884–93. doi:30/17/5884 [pii] 10.1523/JNEUROSCI.5101-09.2010. Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci. 2010;30(17):5884–93. doi:30/17/5884 [pii] 10.1523/JNEUROSCI.5101-09.2010.
73.
go back to reference Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA, Capovilla G, et al. Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia. 2012;53(4):622–30. doi:10.1111/j.1528-1167.2011.03385.x.PubMedCrossRef Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA, Capovilla G, et al. Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia. 2012;53(4):622–30. doi:10.1111/j.1528-1167.2011.03385.x.PubMedCrossRef
74.
go back to reference Vaudano AE, Laufs H, Kiebel SJ, Carmichael DW, Hamandi K, Guye M, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PloS One. 2009;4(8):e6475. doi:10.1371/journal.pone.0006475. Vaudano AE, Laufs H, Kiebel SJ, Carmichael DW, Hamandi K, Guye M, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PloS One. 2009;4(8):e6475. doi:10.1371/journal.pone.0006475.
75.
go back to reference Hauf M, Jann K, Schindler K, Scheidegger O, Meyer K, Rummel C, et al. Localizing seizure-onset zones in presurgical evaluation of drug-resistant epilepsy by electroencephalography/fMRI: effectiveness of alternative thresholding strategies. AJNR Am J Neuroradiol. 2012;33(9):1818–24. doi:10.3174/ajnr.A3052.PubMedCrossRef Hauf M, Jann K, Schindler K, Scheidegger O, Meyer K, Rummel C, et al. Localizing seizure-onset zones in presurgical evaluation of drug-resistant epilepsy by electroencephalography/fMRI: effectiveness of alternative thresholding strategies. AJNR Am J Neuroradiol. 2012;33(9):1818–24. doi:10.3174/ajnr.A3052.PubMedCrossRef
76.
go back to reference Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T. BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage. 2009;45(3):903–16.PubMedCrossRef Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T. BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage. 2009;45(3):903–16.PubMedCrossRef
77.
go back to reference Masterton RA, Carney PW, Abbott DF, Jackson GD. Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging. Epilepsia. 2013;54(5):801–8. doi:10.1111/epi.12163.PubMedCrossRef Masterton RA, Carney PW, Abbott DF, Jackson GD. Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging. Epilepsia. 2013;54(5):801–8. doi:10.1111/epi.12163.PubMedCrossRef
78.
go back to reference Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F, et al. Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol. 2011;105(6):2753–63. doi:10.1152/jn.00895.2010.PubMedCrossRef Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F, et al. Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol. 2011;105(6):2753–63. doi:10.1152/jn.00895.2010.PubMedCrossRef
79.
go back to reference Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex. 2012;22(8):1894–903. doi:bhr268 [pii] 10.1093/cercor/bhr268. Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex. 2012;22(8):1894–903. doi:bhr268 [pii] 10.1093/cercor/bhr268.
80.
go back to reference Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med. 2007;48(7):1162–71. doi:10.2967/jnumed.107.039859.PubMedCrossRef Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med. 2007;48(7):1162–71. doi:10.2967/jnumed.107.039859.PubMedCrossRef
81.
go back to reference Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex. 2011;21(9):2147–57. doi:10.1093/cercor/bhq291.PubMedCrossRef Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex. 2011;21(9):2147–57. doi:10.1093/cercor/bhq291.PubMedCrossRef
82.
go back to reference Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PloS One. 2010;5(1):e8525. doi:10.1371/journal.pone.0008525. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PloS One. 2010;5(1):e8525. doi:10.1371/journal.pone.0008525.
83.
go back to reference Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, et al. Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia. 2005;46(3):420–30. doi:10.1111/j.0013-9580.2005.27004.x.PubMedCrossRef Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, et al. Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia. 2005;46(3):420–30. doi:10.1111/j.0013-9580.2005.27004.x.PubMedCrossRef
84.
go back to reference Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp. 2009;30(5):1580–91. doi:10.1002/hbm.20625.PubMedCrossRef Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp. 2009;30(5):1580–91. doi:10.1002/hbm.20625.PubMedCrossRef
85.
go back to reference Morgan VL, Rogers BP, Sonmezturk HH, Gore JC, Abou-Khalil B. Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia. 2011;52(9):1741–9. doi:10.1111/j.1528-1167.2011.03196.x.PubMedCrossRef Morgan VL, Rogers BP, Sonmezturk HH, Gore JC, Abou-Khalil B. Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia. 2011;52(9):1741–9. doi:10.1111/j.1528-1167.2011.03196.x.PubMedCrossRef
86.
go back to reference Tracy JI, Osipowicz K, Spechler P, Sharan A, Skidmore C, Doucet G, et al. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy. Hum Brain Mapp. 2014;35(1):353–66. doi:10.1002/hbm.22181. Tracy JI, Osipowicz K, Spechler P, Sharan A, Skidmore C, Doucet G, et al. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy. Hum Brain Mapp. 2014;35(1):353–66. doi:10.1002/hbm.22181.
87.
go back to reference Fahoum F, Lopes R, Pittau F, Dubeau F, Gotman J. Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia. 2012;53(9):1618–27. doi:10.1111/j.1528-1167.2012.03533.x.PubMedCrossRef Fahoum F, Lopes R, Pittau F, Dubeau F, Gotman J. Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia. 2012;53(9):1618–27. doi:10.1111/j.1528-1167.2012.03533.x.PubMedCrossRef
88.
go back to reference Laufs H, Richardson MP, Salek-Haddadi A, Vollmar C, Duncan JS, Gale K, et al. Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology. 2011;77(9):904–10. doi:WNL.0b013e31822c90f2 [pii] 10.1212/WNL.0b013e31822c90f2. Laufs H, Richardson MP, Salek-Haddadi A, Vollmar C, Duncan JS, Gale K, et al. Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology. 2011;77(9):904–10. doi:WNL.0b013e31822c90f2 [pii] 10.1212/WNL.0b013e31822c90f2.
89.
go back to reference Wiest R, Estermann L, Scheidegger O, Rummel C, Jann K, Seeck M, et al. Widespread grey matter changes and hemodynamic correlates to interictal epileptiform discharges in pharmacoresistant mesial temporal epilepsy. J Neurol. 2013;260(6):1601–10. doi:10.1007/s00415-013-6841-2. Wiest R, Estermann L, Scheidegger O, Rummel C, Jann K, Seeck M, et al. Widespread grey matter changes and hemodynamic correlates to interictal epileptiform discharges in pharmacoresistant mesial temporal epilepsy. J Neurol. 2013;260(6):1601–10. doi:10.1007/s00415-013-6841-2.
90.
go back to reference Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11(6 Pt 1):805–21. doi:10.1006/nimg.2000.0582S1053-8119(00)90582-2 [pii]. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11(6 Pt 1):805–21. doi:10.1006/nimg.2000.0582S1053-8119(00)90582-2 [pii].
91.
go back to reference Weder BJ, Schindler K, Loher TJ, Wiest R, Wissmeyer M, Ritter P, et al. Brain areas involved in medial temporal lobe seizures: a principal component analysis of ictal SPECT data. Hum Brain Mapp. 2006;27(6):520–34. doi:10.1002/hbm.20196.PubMedCrossRef Weder BJ, Schindler K, Loher TJ, Wiest R, Wissmeyer M, Ritter P, et al. Brain areas involved in medial temporal lobe seizures: a principal component analysis of ictal SPECT data. Hum Brain Mapp. 2006;27(6):520–34. doi:10.1002/hbm.20196.PubMedCrossRef
92.
go back to reference Salmenpera T, Kalviainen R, Partanen K, Pitkanen A. Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure. 2000;9(3):208–15. doi:10.1053/seiz.1999.0373.PubMedCrossRef Salmenpera T, Kalviainen R, Partanen K, Pitkanen A. Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure. 2000;9(3):208–15. doi:10.1053/seiz.1999.0373.PubMedCrossRef
93.
go back to reference Keller SS, Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia. 2008;49(5):741–57. doi:10.1111/j.1528-1167.2007.01485.x.PubMedCrossRef Keller SS, Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia. 2008;49(5):741–57. doi:10.1111/j.1528-1167.2007.01485.x.PubMedCrossRef
94.
go back to reference Bernhardt BC, Worsley KJ, Besson P, Concha L, Lerch JP, Evans AC, et al. Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy. NeuroImage. 2008;42(2):515–24. doi:10.1016/j.neuroimage.2008.04.261.PubMedCrossRef Bernhardt BC, Worsley KJ, Besson P, Concha L, Lerch JP, Evans AC, et al. Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy. NeuroImage. 2008;42(2):515–24. doi:10.1016/j.neuroimage.2008.04.261.PubMedCrossRef
95.
go back to reference Riederer F, Lanzenberger R, Kaya M, Prayer D, Serles W, Baumgartner C. Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study. Neurology. 2008;71(6):419–25. doi:10.1212/01.wnl.0000324264.96100.e0.PubMedCrossRef Riederer F, Lanzenberger R, Kaya M, Prayer D, Serles W, Baumgartner C. Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study. Neurology. 2008;71(6):419–25. doi:10.1212/01.wnl.0000324264.96100.e0.PubMedCrossRef
96.
go back to reference Cascino GD. Temporal lobe epilepsy is a progressive neurologic disorder: time means neurons! Neurology. 2009;72(20):1718–9. doi:10.1212/WNL.0b013e3181a4e465.PubMedCrossRef Cascino GD. Temporal lobe epilepsy is a progressive neurologic disorder: time means neurons! Neurology. 2009;72(20):1718–9. doi:10.1212/WNL.0b013e3181a4e465.PubMedCrossRef
97.
go back to reference Voets NL, Beckmann CF, Cole DM, Hong S, Bernasconi A, Bernasconi N. Structural substrates for resting network disruption in temporal lobe epilepsy. Brain. 2012;135(Pt 8):2350–7. doi:10.1093/brain/aws137. Voets NL, Beckmann CF, Cole DM, Hong S, Bernasconi A, Bernasconi N. Structural substrates for resting network disruption in temporal lobe epilepsy. Brain. 2012;135(Pt 8):2350–7. doi:10.1093/brain/aws137.
98.
go back to reference Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54. doi:S1053-8119(11)01181-5 [pii] 10.1016/j.neuroimage.2011.10.018. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54. doi:S1053-8119(11)01181-5 [pii] 10.1016/j.neuroimage.2011.10.018.
99.
go back to reference Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2013;84C:320–41. doi:S1053-8119(13)00911-7 [pii] 10.1016/j.neuroimage.2013.08.048. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2013;84C:320–41. doi:S1053-8119(13)00911-7 [pii] 10.1016/j.neuroimage.2013.08.048.
100.
go back to reference Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage. 2013;76:439–41. doi:S1053-8119(12)00290-X [pii] 10.1016/j.neuroimage.2012.03.017. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage. 2013;76:439–41. doi:S1053-8119(12)00290-X [pii] 10.1016/j.neuroimage.2012.03.017.
101.
go back to reference Tijssen RH, Jenkinson M, Brooks JC, Jezzard P, Miller KL. Optimizing RetroICor and RetroKCor corrections for multi-shot 3D FMRI acquisitions. NeuroImage. 2013;84C:394–405. doi:S1053-8119(13)00926-9 [pii] 10.1016/j.neuroimage.2013.08.062. Tijssen RH, Jenkinson M, Brooks JC, Jezzard P, Miller KL. Optimizing RetroICor and RetroKCor corrections for multi-shot 3D FMRI acquisitions. NeuroImage. 2013;84C:394–405. doi:S1053-8119(13)00926-9 [pii] 10.1016/j.neuroimage.2013.08.062.
102.
go back to reference Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med. 2000;44(1):162–7. doi:10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E [pii]. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med. 2000;44(1):162–7. doi:10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E [pii].
103.
go back to reference Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37(1):90–101. doi:S1053-8119(07)00383-7 [pii] 10.1016/j.neuroimage.2007.04.042. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37(1):90–101. doi:S1053-8119(07)00383-7 [pii] 10.1016/j.neuroimage.2007.04.042.
104.
go back to reference Hallquist MN, Hwang K, Luna B. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage. 2013;82:208–25. doi:S1053-8119(13)00626-5 [pii] 10.1016/j.neuroimage.2013.05.116. Hallquist MN, Hwang K, Luna B. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage. 2013;82:208–25. doi:S1053-8119(13)00626-5 [pii] 10.1016/j.neuroimage.2013.05.116.
105.
go back to reference Murta T, Leal A, Garrido MI, Figueiredo P. Dynamic Causal Modelling of epileptic seizure propagation pathways: a combined EEG-fMRI study. NeuroImage. 2012;62(3):1634–42. doi:S1053-8119(12)00541-1 [pii] 10.1016/j.neuroimage.2012.05.053. Murta T, Leal A, Garrido MI, Figueiredo P. Dynamic Causal Modelling of epileptic seizure propagation pathways: a combined EEG-fMRI study. NeuroImage. 2012;62(3):1634–42. doi:S1053-8119(12)00541-1 [pii] 10.1016/j.neuroimage.2012.05.053.
Metadata
Title
Neuroimaging of Epilepsy: Lesions, Networks, Oscillations
Authors
E. Abela, MD
C. Rummel
M. Hauf
C. Weisstanner
K. Schindler
R. Wiest
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
Clinical Neuroradiology / Issue 1/2014
Print ISSN: 1869-1439
Electronic ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-014-0284-8

Other articles of this Issue 1/2014

Clinical Neuroradiology 1/2014 Go to the issue